BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 25135071)

  • 1. Insight into curcumin-loaded β-lactoglobulin nanoparticles: incorporation, particle disintegration, and releasing profiles.
    Teng Z; Li Y; Wang Q
    J Agric Food Chem; 2014 Sep; 62(35):8837-47. PubMed ID: 25135071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled release of β-carotene in β-lactoglobulin-dextran-conjugated nanoparticles' in vitro digestion and transport with Caco-2 monolayers.
    Yi J; Lam TI; Yokoyama W; Cheng LW; Zhong F
    J Agric Food Chem; 2014 Sep; 62(35):8900-7. PubMed ID: 25131216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH - Responsive colloidal carriers assembled from β-lactoglobulin and Epsilon poly-L-lysine for oral drug delivery.
    Pujara N; Giri R; Wong KY; Qu Z; Rewatkar P; Moniruzzaman M; Begun J; Ross BP; McGuckin M; Popat A
    J Colloid Interface Sci; 2021 May; 589():45-55. PubMed ID: 33450459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticles synthesized from soy protein: preparation, characterization, and application for nutraceutical encapsulation.
    Teng Z; Luo Y; Wang Q
    J Agric Food Chem; 2012 Mar; 60(10):2712-20. PubMed ID: 22352467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Preparation and physiochemical properties of curcumin-loaded lipid cubic liquid crystalline nanoparticles].
    Su X; He XL; Liu XJ; Guo JY; Zhai GX
    Zhong Yao Cai; 2012 Feb; 35(2):296-9. PubMed ID: 22822677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of sub-100-nm beta-lactoglobulin (BLG) nanoparticles.
    Ko S; Gunasekaran S
    J Microencapsul; 2006 Dec; 23(8):887-98. PubMed ID: 17390630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability.
    Aditya NP; Yang H; Kim S; Ko S
    Colloids Surf B Biointerfaces; 2015 Mar; 127():114-21. PubMed ID: 25660094
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Du Z; Liu J; Zhang H; Wu X; Zhang B; Chen Y; Liu B; Ding L; Xiao H; Zhang T
    J Agric Food Chem; 2019 Nov; 67(45):12511-12519. PubMed ID: 31626537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cationic β-lactoglobulin nanoparticles as a bioavailability enhancer: protein characterization and particle formation.
    Teng Z; Li Y; Luo Y; Zhang B; Wang Q
    Biomacromolecules; 2013 Aug; 14(8):2848-56. PubMed ID: 23789855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and optimization of curcumin-loaded mannosylated chitosan nanoparticles using response surface methodology in the treatment of visceral leishmaniasis.
    Chaubey P; Patel RR; Mishra B
    Expert Opin Drug Deliv; 2014 Aug; 11(8):1163-81. PubMed ID: 24875148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-situ implant containing PCL-curcumin nanoparticles developed using design of experiments.
    Kasinathan N; Amirthalingam M; Reddy ND; Jagani HV; Volety SM; Rao JV
    Drug Deliv; 2016; 23(3):1017-25. PubMed ID: 24956468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Curcumin-loaded polysaccharide nanoparticles: Optimization and anticariogenic activity against Streptococcus mutans.
    Maghsoudi A; Yazdian F; Shahmoradi S; Ghaderi L; Hemati M; Amoabediny G
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1259-1267. PubMed ID: 28415415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carboxymethyl chitosan-soy protein complex nanoparticles for the encapsulation and controlled release of vitamin D₃.
    Teng Z; Luo Y; Wang Q
    Food Chem; 2013 Nov; 141(1):524-32. PubMed ID: 23768389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Curcumin-loaded mixed micelles: preparation, optimization, physicochemical properties and cytotoxicity in vitro.
    Duan Y; Wang J; Yang X; Du H; Xi Y; Zhai G
    Drug Deliv; 2015 Jan; 22(1):50-7. PubMed ID: 24417664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Preparation of curcumin-loaded long-circulating liposomes and its pharmacokinetics in rats].
    You J; Dai DB; He WJ; Li G; Song SC; Wei YH; Li FZ; Xu XL
    Zhongguo Zhong Yao Za Zhi; 2014 Apr; 39(7):1238-42. PubMed ID: 25011261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation, Physicochemical Stability, and Redispersibility of Curcumin-Loaded Rhamnolipid Nanoparticles Using the pH-Driven Method.
    Ma Y; Chen S; Liao W; Zhang L; Liu J; Gao Y
    J Agric Food Chem; 2020 Jul; 68(27):7103-7111. PubMed ID: 32559379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and development of novel mitochondrial targeted nanocarriers, DQAsomes for curcumin inhalation.
    Zupančič Š; Kocbek P; Zariwala MG; Renshaw D; Gul MO; Elsaid Z; Taylor KM; Somavarapu S
    Mol Pharm; 2014 Jul; 11(7):2334-45. PubMed ID: 24852198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of curcumin with β-lactoglobulin-stability, spectroscopic analysis, and molecular modeling of the complex.
    Sneharani AH; Karakkat JV; Singh SA; Rao AG
    J Agric Food Chem; 2010 Oct; 58(20):11130-9. PubMed ID: 20925386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core-Shell Soy Protein-Soy Polysaccharide Complex (Nano)particles as Carriers for Improved Stability and Sustained Release of Curcumin.
    Chen FP; Ou SY; Tang CH
    J Agric Food Chem; 2016 Jun; 64(24):5053-9. PubMed ID: 27243766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Preparation and anti-cancer activity in vitro of curcumin loaded mesoporous silica nanoparticle].
    He LL; Gu J
    Zhongguo Zhong Yao Za Zhi; 2015 Nov; 40(21):4189-93. PubMed ID: 27071254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.