BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25135188)

  • 21. High-resolution array-based comparative genomic hybridization of bladder cancers identifies mouse double minute 4 (MDM4) as an amplification target exclusive of MDM2 and TP53.
    Veerakumarasivam A; Scott HE; Chin SF; Warren A; Wallard MJ; Grimmer D; Ichimura K; Caldas C; Collins VP; Neal DE; Kelly JD
    Clin Cancer Res; 2008 May; 14(9):2527-34. PubMed ID: 18451213
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Defining a 0.5-mb region of genomic gain on chromosome 6p22 in bladder cancer by quantitative-multiplex polymerase chain reaction.
    Evans AJ; Gallie BL; Jewett MA; Pond GR; Vandezande K; Underwood J; Fradet Y; Lim G; Marrano P; Zielenska M; Squire JA
    Am J Pathol; 2004 Jan; 164(1):285-93. PubMed ID: 14695341
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA copy number alterations and PPARG amplification in a patient with multifocal bladder urothelial carcinoma.
    Conconi D; Panzeri E; Redaelli S; Bovo G; Volante M; Viganò P; Strada G; Dalprà L; Bentivegna A
    BMC Res Notes; 2012 Oct; 5():607. PubMed ID: 23114535
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genomic characterization of three urinary bladder cancer cell lines: understanding genomic types of urinary bladder cancer.
    Pinto-Leite R; Carreira I; Melo J; Ferreira SI; Ribeiro I; Ferreira J; Filipe M; Bernardo C; Arantes-Rodrigues R; Oliveira P; Santos L
    Tumour Biol; 2014 May; 35(5):4599-617. PubMed ID: 24459064
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gene expression microarray analysis and genome databases facilitate the characterization of a chromosome 22 derived homogeneously staining region.
    Arcand SL; Mes-Masson AM; Provencher D; Hudson TJ; Tonin PN
    Mol Carcinog; 2004 Sep; 41(1):17-38. PubMed ID: 15352123
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Association of KLK5 overexpression with invasiveness of urinary bladder carcinoma cells.
    Shinoda Y; Kozaki K; Imoto I; Obara W; Tsuda H; Mizutani Y; Shuin T; Fujioka T; Miki T; Inazawa J
    Cancer Sci; 2007 Jul; 98(7):1078-86. PubMed ID: 17459052
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of Bladder Cancer in Urine Sediments by a Novel Multicolor Fluorescence In Situ Hybridization (Quartet) Test.
    Zhang S; Wang Y; Bondaruk J; Majewski T; Yao H; Lee S; Lee JG; Cogdell D; Lotan Y; Dinney C; Wei P; Baggerly K; Czerniak B
    Eur Urol Focus; 2019 Jul; 5(4):664-675. PubMed ID: 29428551
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitation of Aurora kinase A gene copy number in urine sediments and bladder cancer detection.
    Park HS; Park WS; Bondaruk J; Tanaka N; Katayama H; Lee S; Spiess PE; Steinberg JR; Wang Z; Katz RL; Dinney C; Elias KJ; Lotan Y; Naeem RC; Baggerly K; Sen S; Grossman HB; Czerniak B
    J Natl Cancer Inst; 2008 Oct; 100(19):1401-11. PubMed ID: 18812553
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amplification/overexpression of a mitotic kinase gene in human bladder cancer.
    Sen S; Zhou H; Zhang RD; Yoon DS; Vakar-Lopez F; Ito S; Jiang F; Johnston D; Grossman HB; Ruifrok AC; Katz RL; Brinkley W; Czerniak B
    J Natl Cancer Inst; 2002 Sep; 94(17):1320-9. PubMed ID: 12208897
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of
    Calcagno DQ; Takeno SS; Gigek CO; Leal MF; Wisnieski F; Chen ES; Araújo TM; Lima EM; Melaragno MI; Demachki S; Assumpção PP; Burbano RR; Smith MC
    World J Gastroenterol; 2016 Nov; 22(43):9506-9514. PubMed ID: 27920471
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluorescence in situ hybridization deletion mapping at 4p16.3 in bladder cancer cell lines refines the localisation of the critical interval to 30 kb.
    Bell SM; Zuo J; Myers RM; Knowles MA
    Genes Chromosomes Cancer; 1996 Oct; 17(2):108-17. PubMed ID: 8913728
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromosomal imbalances in human bladder urothelial carcinoma: similarities and differences between biopsy samples and cancer stem-like cells.
    Conconi D; Panzeri E; Redaelli S; Bovo G; Viganò P; Strada G; Dalprà L; Bentivegna A
    BMC Cancer; 2014 Sep; 14():646. PubMed ID: 25178926
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of CCND3 and BYSL as candidate targets for the 6p21 amplification in diffuse large B-cell lymphoma.
    Kasugai Y; Tagawa H; Kameoka Y; Morishima Y; Nakamura S; Seto M
    Clin Cancer Res; 2005 Dec; 11(23):8265-72. PubMed ID: 16322284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CEBPD amplification and overexpression in urothelial carcinoma: a driver of tumor metastasis indicating adverse prognosis.
    Wang YH; Wu WJ; Wang WJ; Huang HY; Li WM; Yeh BW; Wu TF; Shiue YL; Sheu JJ; Wang JM; Li CF
    Oncotarget; 2015 Oct; 6(31):31069-84. PubMed ID: 26307680
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide screening for genetic alterations in esophageal cancer by aCGH identifies 11q13 amplification oncogenes associated with nodal metastasis.
    Ying J; Shan L; Li J; Zhong L; Xue L; Zhao H; Li L; Langford C; Guo L; Qiu T; Lu N; Tao Q
    PLoS One; 2012; 7(6):e39797. PubMed ID: 22761904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Target genes of recurrent chromosomal amplification and deletion in urothelial carcinoma.
    Weilandt M; Koch A; Rieder H; Deenen R; Schwender H; Niegisch G; Schulz WA
    Cancer Genomics Proteomics; 2014; 11(3):141-53. PubMed ID: 24969694
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterogeneity of 11q13 region rearrangements in laryngeal squamous cell carcinoma analyzed by microarray platforms and fluorescence in situ hybridization.
    Jarmuz-Szymczak M; Pelinska K; Kostrzewska-Poczekaj M; Bembnista E; Giefing M; Brauze D; Szaumkessel M; Marszalek A; Janiszewska J; Kiwerska K; Bartochowska A; Grenman R; Szyfter W; Szyfter K
    Mol Biol Rep; 2013 Jul; 40(7):4161-71. PubMed ID: 23652995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Demonstration of gene amplification in urinary bladder cancer by fluorescent in situ hybridization (FISH)].
    Sauter G; Moch H; Gudat F; Mihatsch MJ; Haley J; Meecker T; Waldman F
    Verh Dtsch Ges Pathol; 1993; 77():247-51. PubMed ID: 7511290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-throughput tissue microarray analysis of cyclin E gene amplification and overexpression in urinary bladder cancer.
    Richter J; Wagner U; Kononen J; Fijan A; Bruderer J; Schmid U; Ackermann D; Maurer R; Alund G; Knönagel H; Rist M; Wilber K; Anabitarte M; Hering F; Hardmeier T; Schönenberger A; Flury R; Jäger P; Fehr JL; Schraml P; Moch H; Mihatsch MJ; Gasser T; Kallioniemi OP; Sauter G
    Am J Pathol; 2000 Sep; 157(3):787-94. PubMed ID: 10980118
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-resolution mapping of the 11q13 amplicon and identification of a gene, TAOS1, that is amplified and overexpressed in oral cancer cells.
    Huang X; Gollin SM; Raja S; Godfrey TE
    Proc Natl Acad Sci U S A; 2002 Aug; 99(17):11369-74. PubMed ID: 12172009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.