BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25135204)

  • 1. Knockdown of αIIb by RNA degradation by delivering deoxyoligonucleotides piggybacked with control vivo-morpholinos into zebrafish thrombocytes.
    Sundaramoorthi H; Khandekar G; Kim S; Jagadeeswaran P
    Blood Cells Mol Dis; 2015 Jan; 54(1):78-83. PubMed ID: 25135204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vivo-Morpholino knockdown of alphaIIb: A novel approach to inhibit thrombocyte function in adult zebrafish.
    Kim S; Radhakrishnan UP; Rajpurohit SK; Kulkarni V; Jagadeeswaran P
    Blood Cells Mol Dis; 2010 Mar; 44(3):169-74. PubMed ID: 20045356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNaseH-mediated simultaneous piggyback knockdown of multiple genes in adult zebrafish.
    Raman R; Ryon M; Jagadeeswaran P
    Sci Rep; 2020 Nov; 10(1):20187. PubMed ID: 33214638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraflagellar transport proteins are involved in thrombocyte filopodia formation and secretion.
    Radhakrishnan U; Alsrhani A; Sundaramoorthi H; Khandekar G; Kashyap M; Fuchs JL; Perkins BD; Omori Y; Jagadeeswaran P
    Platelets; 2018 Dec; 29(8):811-820. PubMed ID: 29125377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Making sense of anti-sense data.
    Stainier DY; Kontarakis Z; Rossi A
    Dev Cell; 2015 Jan; 32(1):7-8. PubMed ID: 25584794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Target gene knockdown by 2',4'-BNA/LNA antisense oligonucleotides in zebrafish.
    Itoh M; Nakaura M; Imanishi T; Obika S
    Nucleic Acid Ther; 2014 Jun; 24(3):186-91. PubMed ID: 24460393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zebrafish as a model system to study heritable skin diseases.
    Li Q; Uitto J
    Methods Mol Biol; 2013; 961():411-24. PubMed ID: 23325661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of transcribed sequences from young and mature zebrafish thrombocytes.
    Fallatah W; De R; Burks D; Azad RK; Jagadeeswaran P
    PLoS One; 2022; 17(3):e0264776. PubMed ID: 35320267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antisense Oligonucleotide-Mediated Transcript Knockdown in Zebrafish.
    Pauli A; Montague TG; Lennox KA; Behlke MA; Schier AF
    PLoS One; 2015; 10(10):e0139504. PubMed ID: 26436892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional screen of zebrafish deubiquitylating enzymes by morpholino knockdown and in situ hybridization.
    Tse WK; Jiang YJ
    Methods Mol Biol; 2012; 815():321-31. PubMed ID: 22131002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Microinjection of Morpholino Antisense Oligonucleotides and mRNA into Zebrafish Embryos to Elucidate Specific Gene Function in Heart Development.
    Zakaria ZZ; Eisa-Beygi S; Benslimane FM; Ramchandran R; Yalcin HC
    J Vis Exp; 2022 Aug; (186):. PubMed ID: 36036621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of interferon-stimulated genes and cellular stress pathways by morpholinos in zebrafish.
    Lai JKH; Gagalova KK; Kuenne C; El-Brolosy MA; Stainier DYR
    Dev Biol; 2019 Oct; 454(1):21-28. PubMed ID: 31201802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of thrombocyte development in CD41-GFP transgenic zebrafish.
    Lin HF; Traver D; Zhu H; Dooley K; Paw BH; Zon LI; Handin RI
    Blood; 2005 Dec; 106(12):3803-10. PubMed ID: 16099879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology and Gene Expression Screening with Morpholinos in Zebrafish Embryos.
    Tseng LC; Tang CH; Jiang YJ
    Methods Mol Biol; 2016; 1470():213-24. PubMed ID: 27581296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morpholino oligonucleotide knockdown of the extracellular calcium-sensing receptor impairs early skeletal development in zebrafish.
    Herberger AL; Loretz CA
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Nov; 166(3):470-81. PubMed ID: 23911792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Zebrafish tmem88a mutant and morpholino knockdown phenotypes.
    Eve AM; Place ES; Smith JC
    PLoS One; 2017; 12(2):e0172227. PubMed ID: 28192479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of zebrafish and knockdown technology to define proprotein convertase activity.
    Chitramuthu BP; Bennett HP
    Methods Mol Biol; 2011; 768():273-96. PubMed ID: 21805249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of seven hox genes in zebrafish thrombopoiesis.
    Sundaramoorthi H; Fallatah W; Mary J; Jagadeeswaran P
    Blood Cells Mol Dis; 2024 Jan; 104():102796. PubMed ID: 37717409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish.
    Kok FO; Shin M; Ni CW; Gupta A; Grosse AS; van Impel A; Kirchmaier BC; Peterson-Maduro J; Kourkoulis G; Male I; DeSantis DF; Sheppard-Tindell S; Ebarasi L; Betsholtz C; Schulte-Merker S; Wolfe SA; Lawson ND
    Dev Cell; 2015 Jan; 32(1):97-108. PubMed ID: 25533206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Out with the old, in with the new: reassessing morpholino knockdowns in light of genome editing technology.
    Schulte-Merker S; Stainier DY
    Development; 2014 Aug; 141(16):3103-4. PubMed ID: 25100652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.