These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 25135662)

  • 1. Quantification of leakage from large unilamellar lipid vesicles by fluorescence correlation spectroscopy.
    Kristensen K; Henriksen JR; Andresen TL
    Biochim Biophys Acta; 2014 Dec; 1838(12):2994-3002. PubMed ID: 25135662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-vesicle detection and analysis of peptide-induced membrane permeabilization.
    Kristensen K; Ehrlich N; Henriksen JR; Andresen TL
    Langmuir; 2015 Mar; 31(8):2472-83. PubMed ID: 25664684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applying Fluorescence Correlation Spectroscopy to Investigate Peptide-Induced Membrane Disruption.
    Kristensen K; Henriksen JR; Andresen TL
    Methods Mol Biol; 2017; 1548():159-180. PubMed ID: 28013503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct visualization of membrane leakage induced by the antibiotic peptides: maculatin, citropin, and aurein.
    Ambroggio EE; Separovic F; Bowie JH; Fidelio GD; Bagatolli LA
    Biophys J; 2005 Sep; 89(3):1874-81. PubMed ID: 15994901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores.
    Wimley WC; Selsted ME; White SH
    Protein Sci; 1994 Sep; 3(9):1362-73. PubMed ID: 7833799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence correlation spectroscopy for the study of membrane dynamics and organization in giant unilamellar vesicles.
    García-Sáez AJ; Carrer DC; Schwille P
    Methods Mol Biol; 2010; 606():493-508. PubMed ID: 20013417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of phospholipid composition on an amphipathic peptide-mediated pore formation in bilayer vesicles.
    Nicol F; Nir S; Szoka FC
    Biophys J; 2000 Feb; 78(2):818-29. PubMed ID: 10653794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scanning fluorescence correlation spectroscopy in model membrane systems.
    Unsay JD; García-Sáez AJ
    Methods Mol Biol; 2013; 1033():185-205. PubMed ID: 23996179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introducing a fluorescence-based standard to quantify protein partitioning into membranes.
    Thomas FA; Visco I; Petrášek Z; Heinemann F; Schwille P
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2932-41. PubMed ID: 26342678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying lipid-protein interaction by fluorescence correlation spectroscopy (FCS).
    Melo AM; Prieto M; Coutinho A
    Methods Mol Biol; 2014; 1076():575-95. PubMed ID: 24108645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of wheat alpha-thionin with large unilamellar vesicles.
    Caaveiro JM; Molina A; Rodríguez-Palenzuela P; Goñi FM; González-Mañas JM
    Protein Sci; 1998 Dec; 7(12):2567-77. PubMed ID: 9865951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peripheral and integral membrane binding of peptides characterized by time-dependent fluorescence shifts: focus on antimicrobial peptide LAH₄.
    Macháň R; Jurkiewicz P; Olżyńska A; Olšinová M; Cebecauer M; Marquette A; Bechinger B; Hof M
    Langmuir; 2014 Jun; 30(21):6171-9. PubMed ID: 24807004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane binding of pH-sensitive influenza fusion peptides. positioning, configuration, and induced leakage in a lipid vesicle model.
    Esbjörner EK; Oglecka K; Lincoln P; Gräslund A; Nordén B
    Biochemistry; 2007 Nov; 46(47):13490-504. PubMed ID: 17973492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic pathway of antimicrobial peptide magainin 2-induced pore formation in lipid membranes.
    Tamba Y; Ariyama H; Levadny V; Yamazaki M
    J Phys Chem B; 2010 Sep; 114(37):12018-26. PubMed ID: 20799752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial Peptide Lactoferricin B-Induced Rapid Leakage of Internal Contents from Single Giant Unilamellar Vesicles.
    Moniruzzaman M; Alam JM; Dohra H; Yamazaki M
    Biochemistry; 2015 Sep; 54(38):5802-14. PubMed ID: 26368853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insight into the mechanism of action of wasp mastoparan peptides: lytic activity and clustering observed with giant vesicles.
    Cabrera MP; Alvares DS; Leite NB; de Souza BM; Palma MS; Riske KA; Neto JR
    Langmuir; 2011 Sep; 27(17):10805-13. PubMed ID: 21797216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revealing the lytic mechanism of the antimicrobial peptide gomesin by observing giant unilamellar vesicles.
    Domingues TM; Riske KA; Miranda A
    Langmuir; 2010 Jul; 26(13):11077-84. PubMed ID: 20356040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of the antimicrobial peptide Ac-FRWWHR-NH(2) with model membrane systems and bacterial cells.
    Rezansoff AJ; Hunter HN; Jing W; Park IY; Kim SC; Vogel HJ
    J Pept Res; 2005 May; 65(5):491-501. PubMed ID: 15853943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Measurement of Pore Dynamics and Leakage Induced by a Model Antimicrobial Peptide in Single Vesicles and Cells.
    Burton MG; Huang QM; Hossain MA; Wade JD; Palombo EA; Gee ML; Clayton AH
    Langmuir; 2016 Jun; 32(25):6496-505. PubMed ID: 27281288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entry of cell-penetrating peptide transportan 10 into a single vesicle by translocating across lipid membrane and its induced pores.
    Islam MZ; Ariyama H; Alam JM; Yamazaki M
    Biochemistry; 2014 Jan; 53(2):386-96. PubMed ID: 24397335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.