These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 25135935)

  • 1. Oxidoreductase activity is necessary for N-glycosylation of cysteine-proximal acceptor sites in glycoproteins.
    Cherepanova NA; Shrimal S; Gilmore R
    J Cell Biol; 2014 Aug; 206(4):525-39. PubMed ID: 25135935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive Interactome Analysis Reveals that STT3B Is Required for N-Glycosylation of Lassa Virus Glycoprotein.
    Zhu S; Wan W; Zhang Y; Shang W; Pan X; Zhang LK; Xiao G
    J Virol; 2019 Dec; 93(23):. PubMed ID: 31511384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycosylation of closely spaced acceptor sites in human glycoproteins.
    Shrimal S; Gilmore R
    J Cell Sci; 2013 Dec; 126(Pt 23):5513-23. PubMed ID: 24105266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms.
    Ruiz-Canada C; Kelleher DJ; Gilmore R
    Cell; 2009 Jan; 136(2):272-83. PubMed ID: 19167329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mammalian cells lacking either the cotranslational or posttranslocational oligosaccharyltransferase complex display substrate-dependent defects in asparagine linked glycosylation.
    Cherepanova NA; Gilmore R
    Sci Rep; 2016 Feb; 6():20946. PubMed ID: 26864433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extreme C-terminal sites are posttranslocationally glycosylated by the STT3B isoform of the OST.
    Shrimal S; Trueman SF; Gilmore R
    J Cell Biol; 2013 Apr; 201(1):81-95. PubMed ID: 23530066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dengue Virus Hijacks a Noncanonical Oxidoreductase Function of a Cellular Oligosaccharyltransferase Complex.
    Lin DL; Cherepanova NA; Bozzacco L; MacDonald MR; Gilmore R; Tai AW
    mBio; 2017 Jul; 8(4):. PubMed ID: 28720733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum.
    Shrimal S; Cherepanova NA; Gilmore R
    Semin Cell Dev Biol; 2015 May; 41():71-8. PubMed ID: 25460543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mammalian STT3A/B oligosaccharyltransferases segregate N-glycosylation at the translocon from lipid-linked oligosaccharide hydrolysis.
    Lu H; Fermaintt CS; Cherepanova NA; Gilmore R; Yan N; Lehrman MA
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9557-9562. PubMed ID: 30181269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OST4 is a subunit of the mammalian oligosaccharyltransferase required for efficient N-glycosylation.
    Dumax-Vorzet A; Roboti P; High S
    J Cell Sci; 2013 Jun; 126(Pt 12):2595-606. PubMed ID: 23606741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of green fluorescence protein mutant to monitor STT3B-dependent N-glycosylation.
    Kitajima T; Xue W; Liu YS; Wang CD; Liu SS; Fujita M; Gao XD
    FEBS J; 2018 Mar; 285(5):915-928. PubMed ID: 29282902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in
    Blommaert E; PĂ©anne R; Cherepanova NA; Rymen D; Staels F; Jaeken J; Race V; Keldermans L; Souche E; Corveleyn A; Sparkes R; Bhattacharya K; Devalck C; Schrijvers R; Foulquier F; Gilmore R; Matthijs G
    Proc Natl Acad Sci U S A; 2019 May; 116(20):9865-9870. PubMed ID: 31036665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in STT3A and STT3B cause two congenital disorders of glycosylation.
    Shrimal S; Ng BG; Losfeld ME; Gilmore R; Freeze HH
    Hum Mol Genet; 2013 Nov; 22(22):4638-45. PubMed ID: 23842455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asparagine-linked glycosylation is not directly coupled to protein translocation across the endoplasmic reticulum in
    Shrimal S; Cherepanova NA; Mandon EC; Venev SV; Gilmore R
    Mol Biol Cell; 2019 Oct; 30(21):2626-2638. PubMed ID: 31433728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative glycoproteomics reveals new classes of STT3A- and STT3B-dependent N-glycosylation sites.
    Cherepanova NA; Venev SV; Leszyk JD; Shaffer SA; Gilmore R
    J Cell Biol; 2019 Aug; 218(8):2782-2796. PubMed ID: 31296534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting STT3A-oligosaccharyltransferase with NGI-1 causes herpes simplex virus 1 dysfunction.
    Lu H; Cherepanova NA; Gilmore R; Contessa JN; Lehrman MA
    FASEB J; 2019 Jun; 33(6):6801-6812. PubMed ID: 30811219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cytosolic reductase pathway is required for efficient N-glycosylation of an STT3B-dependent acceptor site.
    van Lith M; Pringle MA; Fleming B; Gaeta G; Im J; Gilmore R; Bulleid NJ
    J Cell Sci; 2021 Nov; 134(22):. PubMed ID: 34734627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteome and Glycoproteome Analyses Reveal the Protein N-Linked Glycosylation Specificity of STT3A and STT3B.
    Wen P; Chen J; Zuo C; Gao X; Fujita M; Yang G
    Cells; 2022 Sep; 11(18):. PubMed ID: 36139350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Insight into the Mechanism of
    Mohanty S; Chaudhary BP; Zoetewey D
    Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32316603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The middle X residue influences cotranslational N-glycosylation consensus site skipping.
    Malaby HL; Kobertz WR
    Biochemistry; 2014 Aug; 53(30):4884-93. PubMed ID: 25029371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.