BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 25135969)

  • 1. Long-term climbing fibre activity induces transcription of microRNAs in cerebellar Purkinje cells.
    Barmack NH; Qian Z; Yakhnitsa V
    Philos Trans R Soc Lond B Biol Sci; 2014 Sep; 369(1652):. PubMed ID: 25135969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climbing fibers induce microRNA transcription in cerebellar Purkinje cells.
    Barmack NH; Qian Z; Yakhnitsa V
    Neuroscience; 2010 Dec; 171(3):655-65. PubMed ID: 20875844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climbing fiber activity reduces 14-3-3-θ regulated GABA(A) receptor phosphorylation in cerebellar Purkinje cells.
    Qian Z; Micorescu M; Yakhnitsa V; Barmack NH
    Neuroscience; 2012 Jan; 201():34-45. PubMed ID: 22119642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climbing fiber-evoked Purkinje cell discharge reduces expression of GABA(A) receptor-associated protein and decreases its interaction with GABA(A) receptors.
    Qian Z; Yakhnitsa V; Barmack NH
    J Neurochem; 2011 Apr; 117(2):197-208. PubMed ID: 21105873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity-dependent expression of calbindin in rabbit floccular Purkinje cells modulated by optokinetic stimulation.
    Barmack NH; Qian Z
    Neuroscience; 2002; 113(1):235-50. PubMed ID: 12123701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells.
    Kano M; Rexhausen U; Dreessen J; Konnerth A
    Nature; 1992 Apr; 356(6370):601-4. PubMed ID: 1313949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climbing fibre modification of cerebellar Purkinje cell responses to parallel fibre inputs.
    Rawson JA; Tilokskulchai K
    Brain Res; 1982 Apr; 237(2):492-7. PubMed ID: 7083009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vestibularly induced slow oscillations in climbing fiber responses of Purkinje cells in the cerebellar nodulus of the rabbit.
    Barmack NH; Shojaku H
    Neuroscience; 1992 Sep; 50(1):1-5. PubMed ID: 1407553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term depression of the cerebellar climbing fiber--Purkinje neuron synapse.
    Hansel C; Linden DJ
    Neuron; 2000 May; 26(2):473-82. PubMed ID: 10839365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavior of floccular Purkinje cells correlated with adaptation of horizontal optokinetic eye movement response in pigmented rabbits.
    Nagao S
    Exp Brain Res; 1988; 73(3):489-97. PubMed ID: 3224658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of protein kinase C inhibitor blocks cerebellar long-term depression without affecting Purkinje cell excitability in alert mice.
    Goossens J; Daniel H; Rancillac A; van der Steen J; Oberdick J; Crépel F; De Zeeuw CI; Frens MA
    J Neurosci; 2001 Aug; 21(15):5813-23. PubMed ID: 11466453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of protein kinase C family in the cerebellum-dependent adaptive learning of horizontal optokinetic response eye movements in mice.
    Shutoh F; Katoh A; Ohki M; Itohara S; Tonegawa S; Nagao S
    Eur J Neurosci; 2003 Jul; 18(1):134-42. PubMed ID: 12859346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum.
    Eccles JC; Llinás R; Sasaki K
    J Physiol; 1966 Jan; 182(2):268-96. PubMed ID: 5944665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Increase in the efficiency of parallel fiber synapses on Purkinje cells of the frog after simultaneous activation of climbing and parallel fibers].
    Dunin-Barkovskiĭ VL; Zhukovskaia NM; Larionova NP; Chailakhian LM; Chudakov LI
    Neirofiziologiia; 1987; 19(2):156-64. PubMed ID: 3496545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid development of Purkinje cell excitability, functional cerebellar circuit, and afferent sensory input to cerebellum in zebrafish.
    Hsieh JY; Ulrich B; Issa FA; Wan J; Papazian DM
    Front Neural Circuits; 2014; 8():147. PubMed ID: 25565973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple spike and complex spike activity of floccular Purkinje cells during the optokinetic reflex in mice lacking cerebellar long-term depression.
    Goossens HH; Hoebeek FE; Van Alphen AM; Van Der Steen J; Stahl JS; De Zeeuw CI; Frens MA
    Eur J Neurosci; 2004 Feb; 19(3):687-97. PubMed ID: 14984419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vestibular and visual climbing fiber signals evoked in the uvula-nodulus of the rabbit cerebellum by natural stimulation.
    Barmack NH; Shojaku H
    J Neurophysiol; 1995 Dec; 74(6):2573-89. PubMed ID: 8747215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correspondence between climbing fibre input and motor output in eyeblink-related areas in cat cerebellar cortex.
    Hesslow G
    J Physiol; 1994 Apr; 476(2):229-44. PubMed ID: 8046640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive Balance in Posterior Cerebellum.
    Barmack NH; Pettorossi VE
    Front Neurol; 2021; 12():635259. PubMed ID: 33767662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the Purkinje cell/climbing fiber zone and its target neurons responsible for eye-movement control by the cerebellar flocculus.
    Sato Y; Kawasaki T
    Brain Res Brain Res Rev; 1991; 16(1):39-64. PubMed ID: 1863816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.