These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 25136111)

  • 41. Aquaculture: a rapidly growing and significant source of sustainable food? Status, transitions and potential.
    Little DC; Newton RW; Beveridge MC
    Proc Nutr Soc; 2016 Aug; 75(3):274-86. PubMed ID: 27476856
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa.
    Chivenge P; Mabhaudhi T; Modi AT; Mafongoya P
    Int J Environ Res Public Health; 2015 May; 12(6):5685-711. PubMed ID: 26016431
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Resilience through risk management: cooperative insurance in small-holder aquaculture systems.
    Watson JR; Armerin F; Klinger DH; Belton B
    Heliyon; 2018 Sep; 4(9):e00799. PubMed ID: 30294691
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Paradigm changes in freshwater aquaculture practices in China: Moving towards achieving environmental integrity and sustainability.
    Wang Q; Li Z; Gui JF; Liu J; Ye S; Yuan J; De Silva SS
    Ambio; 2018 May; 47(4):410-426. PubMed ID: 29168121
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A traits-based approach to assess aquaculture's contributions to food, climate change, and biodiversity goals.
    Wong A; Frommel AY; Sumaila UR; Cheung WWL
    NPJ Ocean Sustain; 2024; 3(1):30. PubMed ID: 38828386
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Drivers of household food availability in sub-Saharan Africa based on big data from small farms.
    Frelat R; Lopez-Ridaura S; Giller KE; Herrero M; Douxchamps S; Andersson Djurfeldt A; Erenstein O; Henderson B; Kassie M; Paul BK; Rigolot C; Ritzema RS; Rodriguez D; van Asten PJ; van Wijk MT
    Proc Natl Acad Sci U S A; 2016 Jan; 113(2):458-63. PubMed ID: 26712016
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vulnerabilities in aquatic animal production.
    Subasinghe RP; Delamare-Deboutteville J; Mohan CV; Phillips MJ
    Rev Sci Tech; 2019 Sep; 38(2):423-436. PubMed ID: 31866684
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Closing Yield Gaps: How Sustainable Can We Be?
    Pradhan P; Fischer G; van Velthuizen H; Reusser DE; Kropp JP
    PLoS One; 2015; 10(6):e0129487. PubMed ID: 26083456
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genome Editing for Global Food Security.
    Ma X; Mau M; Sharbel TF
    Trends Biotechnol; 2018 Feb; 36(2):123-127. PubMed ID: 28893405
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Agrobiodiversity and in situ conservation in ethnic minority communities of Xishuangbanna in Yunnan Province, Southwest China.
    Shen S; Xu G; Li D; Clements DR; Zhang F; Jin G; Wu J; Wei P; Lin S; Xue D
    J Ethnobiol Ethnomed; 2017 May; 13(1):28. PubMed ID: 28506271
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Impact of climatic and other environmental changes on food production and population health in the coming decades.
    McMichael AJ
    Proc Nutr Soc; 2001 May; 60(2):195-201. PubMed ID: 11681635
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Scenario analysis on optimal farmed-fish-species composition in China: A theoretical methodology to benefit wild-fishery stock, water conservation, economic and protein outputs under the context of climate change.
    Song G; Zhao X; Lv L; Yuan Q; Ma Y; Bayer LB; Zhang D; Fullana-I-Palmer P
    Sci Total Environ; 2022 Feb; 806(Pt 2):150600. PubMed ID: 34592296
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improving the sustainability of global meat and milk production.
    Salter AM
    Proc Nutr Soc; 2017 Feb; 76(1):22-27. PubMed ID: 27417542
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preserving global land and water resources through the replacement of livestock feed crops with agricultural by-products.
    Govoni C; D'Odorico P; Pinotti L; Rulli MC
    Nat Food; 2023 Dec; 4(12):1047-1057. PubMed ID: 38053006
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Review: Role of herbivores in sustainable agriculture in Sub-Saharan Africa.
    Ayantunde AA; Duncan AJ; van Wijk MT; Thorne P
    Animal; 2018 Dec; 12(s2):s199-s209. PubMed ID: 30139396
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Review: Domestic herbivores and food security: current contribution, trends and challenges for a sustainable development.
    Mottet A; Teillard F; Boettcher P; De' Besi G; Besbes B
    Animal; 2018 Dec; 12(s2):s188-s198. PubMed ID: 30215340
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tropical agricultural residues and their potential uses in fish feeds: the Costa Rican situation.
    Ulloa JB; van Weerd JH; Huisman EA; Verreth JA
    Waste Manag; 2004; 24(1):87-97. PubMed ID: 14672728
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Non-farmed fish contribute to greater micronutrient intakes than farmed fish: results from an intra-household survey in rural Bangladesh.
    Bogard JR; Marks GC; Mamun A; Thilsted SH
    Public Health Nutr; 2017 Mar; 20(4):702-711. PubMed ID: 27702421
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Higher fish but lower micronutrient intakes: Temporal changes in fish consumption from capture fisheries and aquaculture in Bangladesh.
    Bogard JR; Farook S; Marks GC; Waid J; Belton B; Ali M; Toufique K; Mamun A; Thilsted SH
    PLoS One; 2017; 12(4):e0175098. PubMed ID: 28384232
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Agriculture can help aquaculture become greener.
    Napier JA; Haslam RP; Olsen RE; Tocher DR; Betancor MB
    Nat Food; 2020 Nov; 1(11):680-683. PubMed ID: 37128041
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.