These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Maximum Caliber: a variational approach applied to two-state dynamics. Stock G; Ghosh K; Dill KA J Chem Phys; 2008 May; 128(19):194102. PubMed ID: 18500851 [TBL] [Abstract][Full Text] [Related]
10. Estimating the sampling error: distribution of transition matrices and functions of transition matrices for given trajectory data. Metzner P; Noé F; Schütte C Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021106. PubMed ID: 19792076 [TBL] [Abstract][Full Text] [Related]
12. The Maximum Caliber Variational Principle for Nonequilibria. Ghosh K; Dixit PD; Agozzino L; Dill KA Annu Rev Phys Chem; 2020 Apr; 71():213-238. PubMed ID: 32075515 [TBL] [Abstract][Full Text] [Related]
13. A method of incorporating rate constants as kinetic constraints in molecular dynamics simulations. Brotzakis ZF; Vendruscolo M; Bolhuis PG Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33376207 [TBL] [Abstract][Full Text] [Related]
14. Efficient Bayesian estimation of Markov model transition matrices with given stationary distribution. Trendelkamp-Schroer B; Noé F J Chem Phys; 2013 Apr; 138(16):164113. PubMed ID: 23635117 [TBL] [Abstract][Full Text] [Related]
15. Communication: Maximum caliber is a general variational principle for nonequilibrium statistical mechanics. Hazoglou MJ; Walther V; Dixit PD; Dill KA J Chem Phys; 2015 Aug; 143(5):051104. PubMed ID: 26254635 [TBL] [Abstract][Full Text] [Related]
16. Nearly reducible finite Markov chains: Theory and algorithms. Sharpe DJ; Wales DJ J Chem Phys; 2021 Oct; 155(14):140901. PubMed ID: 34654307 [TBL] [Abstract][Full Text] [Related]
17. A relative entropy rate method for path space sensitivity analysis of stationary complex stochastic dynamics. Pantazis Y; Katsoulakis MA J Chem Phys; 2013 Feb; 138(5):054115. PubMed ID: 23406106 [TBL] [Abstract][Full Text] [Related]
18. Probability distributions of molecular observables computed from Markov models. Noé F J Chem Phys; 2008 Jun; 128(24):244103. PubMed ID: 18601313 [TBL] [Abstract][Full Text] [Related]
19. Computing long time scale biomolecular dynamics using quasi-stationary distribution kinetic Monte Carlo (QSD-KMC). Agarwal A; Hengartner NW; Gnanakaran S; Voter AF J Chem Phys; 2019 Aug; 151(7):074109. PubMed ID: 31438708 [TBL] [Abstract][Full Text] [Related]
20. Numerical analysis of first-passage processes in finite Markov chains exhibiting metastability. Sharpe DJ; Wales DJ Phys Rev E; 2021 Jul; 104(1-2):015301. PubMed ID: 34412280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]