These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 25136269)

  • 1. Inferring Microscopic Kinetic Rates from Stationary State Distributions.
    Dixit PD; Dill KA
    J Chem Theory Comput; 2014 Aug; 10(8):3002-3005. PubMed ID: 25136269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perspective: Maximum caliber is a general variational principle for dynamical systems.
    Dixit PD; Wagoner J; Weistuch C; Pressé S; Ghosh K; Dill KA
    J Chem Phys; 2018 Jan; 148(1):010901. PubMed ID: 29306272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Markov processes follow from the principle of maximum caliber.
    Ge H; Pressé S; Ghosh K; Dill KA
    J Chem Phys; 2012 Feb; 136(6):064108. PubMed ID: 22360170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring Transition Rates of Networks from Populations in Continuous-Time Markov Processes.
    Dixit PD; Jain A; Stock G; Dill KA
    J Chem Theory Comput; 2015 Nov; 11(11):5464-72. PubMed ID: 26574334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximum caliber inference of nonequilibrium processes.
    Otten M; Stock G
    J Chem Phys; 2010 Jul; 133(3):034119. PubMed ID: 20649320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximum caliber inference and the stochastic Ising model.
    Cafaro C; Ali SA
    Phys Rev E; 2016 Nov; 94(5-1):052145. PubMed ID: 27967170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stationary properties of maximum-entropy random walks.
    Dixit PD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042149. PubMed ID: 26565210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermokinetic relations.
    Delvenne JC; Falasco G
    Phys Rev E; 2024 Jan; 109(1-1):014109. PubMed ID: 38366524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maximum Caliber: a variational approach applied to two-state dynamics.
    Stock G; Ghosh K; Dill KA
    J Chem Phys; 2008 May; 128(19):194102. PubMed ID: 18500851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating the sampling error: distribution of transition matrices and functions of transition matrices for given trajectory data.
    Metzner P; Noé F; Schütte C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021106. PubMed ID: 19792076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing molecular potential models by imposing kinetic constraints with path reweighting.
    Bolhuis PG; Brotzakis ZF; Keller BG
    J Chem Phys; 2023 Aug; 159(7):. PubMed ID: 37581416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Maximum Caliber Variational Principle for Nonequilibria.
    Ghosh K; Dixit PD; Agozzino L; Dill KA
    Annu Rev Phys Chem; 2020 Apr; 71():213-238. PubMed ID: 32075515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method of incorporating rate constants as kinetic constraints in molecular dynamics simulations.
    Brotzakis ZF; Vendruscolo M; Bolhuis PG
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33376207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Bayesian estimation of Markov model transition matrices with given stationary distribution.
    Trendelkamp-Schroer B; Noé F
    J Chem Phys; 2013 Apr; 138(16):164113. PubMed ID: 23635117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Communication: Maximum caliber is a general variational principle for nonequilibrium statistical mechanics.
    Hazoglou MJ; Walther V; Dixit PD; Dill KA
    J Chem Phys; 2015 Aug; 143(5):051104. PubMed ID: 26254635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nearly reducible finite Markov chains: Theory and algorithms.
    Sharpe DJ; Wales DJ
    J Chem Phys; 2021 Oct; 155(14):140901. PubMed ID: 34654307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A relative entropy rate method for path space sensitivity analysis of stationary complex stochastic dynamics.
    Pantazis Y; Katsoulakis MA
    J Chem Phys; 2013 Feb; 138(5):054115. PubMed ID: 23406106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probability distributions of molecular observables computed from Markov models.
    Noé F
    J Chem Phys; 2008 Jun; 128(24):244103. PubMed ID: 18601313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computing long time scale biomolecular dynamics using quasi-stationary distribution kinetic Monte Carlo (QSD-KMC).
    Agarwal A; Hengartner NW; Gnanakaran S; Voter AF
    J Chem Phys; 2019 Aug; 151(7):074109. PubMed ID: 31438708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical analysis of first-passage processes in finite Markov chains exhibiting metastability.
    Sharpe DJ; Wales DJ
    Phys Rev E; 2021 Jul; 104(1-2):015301. PubMed ID: 34412280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.