These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 25136626)
41. Rational flux-tuning of Halomonas bluephagenesis for co-production of bioplastic PHB and ectoine. Ma H; Zhao Y; Huang W; Zhang L; Wu F; Ye J; Chen GQ Nat Commun; 2020 Jul; 11(1):3313. PubMed ID: 32620759 [TBL] [Abstract][Full Text] [Related]
42. Metabolic modeling of Halomonas campaniensis improves polyhydroxybutyrate production under nitrogen limitation. Deantas-Jahn C; Mendoza SN; Licona-Cassani C; Orellana C; Saa PA Appl Microbiol Biotechnol; 2024 Apr; 108(1):310. PubMed ID: 38662130 [TBL] [Abstract][Full Text] [Related]
43. Pilot Scale-up of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) Production by Halomonas bluephagenesis via Cell Growth Adapted Optimization Process. Ye J; Huang W; Wang D; Chen F; Yin J; Li T; Zhang H; Chen GQ Biotechnol J; 2018 May; 13(5):e1800074. PubMed ID: 29578651 [TBL] [Abstract][Full Text] [Related]
44. Revealing of sugar utilization systems in Halomonas sp. YLGW01 and application for poly(3-hydroxybutyrate) production with low-cost medium and easy recovery. Park YL; Song HS; Choi TR; Lee SM; Park SL; Lee HS; Kim HJ; Bhatia SK; Gurav R; Park K; Yang YH Int J Biol Macromol; 2021 Jan; 167():151-159. PubMed ID: 33249160 [TBL] [Abstract][Full Text] [Related]
45. A wheat biorefining strategy based on solid-state fermentation for fermentative production of succinic acid. Du C; Lin SK; Koutinas A; Wang R; Dorado P; Webb C Bioresour Technol; 2008 Nov; 99(17):8310-5. PubMed ID: 18434138 [TBL] [Abstract][Full Text] [Related]
46. Biorefinery development through utilization of biodiesel industry by-products as sole fermentation feedstock for 1,3-propanediol production. Chatzifragkou A; Papanikolaou S; Kopsahelis N; Kachrimanidou V; Dorado MP; Koutinas AA Bioresour Technol; 2014 May; 159():167-75. PubMed ID: 24650530 [TBL] [Abstract][Full Text] [Related]
47. Finding of Novel Galactose Utilizing Jung HJ; Kim SH; Cho DH; Kim BC; Bhatia SK; Lee J; Jeon JM; Yoon JJ; Yang YH Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559775 [TBL] [Abstract][Full Text] [Related]
48. Cereal-based biorefinery development: utilisation of wheat milling by-products for the production of succinic acid. Dorado MP; Lin SK; Koutinas A; Du C; Wang R; Webb C J Biotechnol; 2009 Aug; 143(1):51-9. PubMed ID: 19539669 [TBL] [Abstract][Full Text] [Related]
49. Taxonomic characterization and metabolic analysis of the Halomonas sp. KM-1, a highly bioplastic poly(3-hydroxybutyrate)-producing bacterium. Kawata Y; Shi LH; Kawasaki K; Shigeri Y J Biosci Bioeng; 2012 Apr; 113(4):456-60. PubMed ID: 22172913 [TBL] [Abstract][Full Text] [Related]
51. Effect of feeding regimens on polyhydroxybutyrate production from food wastes by Cupriavidus necator. Hafuka A; Sakaida K; Satoh H; Takahashi M; Watanabe Y; Okabe S Bioresour Technol; 2011 Feb; 102(3):3551-3. PubMed ID: 20870404 [TBL] [Abstract][Full Text] [Related]
52. Improvement of (R)-3-hydroxybutyric acid secretion during Halomonas sp. KM-1 cultivation with saccharified Japanese cedar by the addition of urea. Kawata Y; Nojiri M; Matsushita I; Tsubota J Lett Appl Microbiol; 2015 Oct; 61(4):397-402. PubMed ID: 26249654 [TBL] [Abstract][Full Text] [Related]
53. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution. Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327 [TBL] [Abstract][Full Text] [Related]
54. Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Patel SK; Kumar P; Singh M; Lee JK; Kalia VC Bioresour Technol; 2015 Jan; 176():136-41. PubMed ID: 25460994 [TBL] [Abstract][Full Text] [Related]
55. Production of Polyhydroxybutyrate by halotolerant Halomonas cerina YK44 using sugarcane molasses and soybean flour in tap water. Shin Y; Jung HJ; Oh J; Kim S; Lee Y; Choi S; Jeon JM; Yoon JJ; Bhatia SK; Yang YH Int J Biol Macromol; 2024 Nov; 279(Pt 4):135358. PubMed ID: 39260652 [TBL] [Abstract][Full Text] [Related]
56. β-Mannanase Production Using Coffee Industry Waste for Application in Soluble Coffee Processing. Favaro CP; Baraldi IJ; Casciatori FP; Farinas CS Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32033042 [TBL] [Abstract][Full Text] [Related]
57. Improved productivity of poly (3-hydroxybutyrate) (PHB) in thermophilic Chelatococcus daeguensis TAD1 using glycerol as the growth substrate in a fed-batch culture. Cui B; Huang S; Xu F; Zhang R; Zhang Y Appl Microbiol Biotechnol; 2015 Jul; 99(14):6009-19. PubMed ID: 25773974 [TBL] [Abstract][Full Text] [Related]
58. Utilization of waste cake for fermentative ethanol production. Han W; Xu X; Gao Y; He H; Chen L; Tian X; Hou P Sci Total Environ; 2019 Jul; 673():378-383. PubMed ID: 30991327 [TBL] [Abstract][Full Text] [Related]
59. A statistical approach for optimization of polyhydroxybutyrate production by Bacillus sphaericus NCIM 5149 under submerged fermentation using central composite design. Ramadas NV; Soccol CR; Pandey A Appl Biochem Biotechnol; 2010 Oct; 162(4):996-1007. PubMed ID: 19812909 [TBL] [Abstract][Full Text] [Related]
60. Valorization of glycerol through the production of biopolymers: the PHB case using Bacillus megaterium. Naranjo JM; Posada JA; Higuita JC; Cardona CA Bioresour Technol; 2013 Apr; 133():38-44. PubMed ID: 23428814 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]