These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25136633)

  • 1. Acute in vivo response to an alternative implant for urogynecology.
    Roman Regueros S; Albersen M; Manodoro S; Zia S; Osman NI; Bullock AJ; Chapple CR; Deprest J; MacNeil S
    Biomed Res Int; 2014; 2014():853610. PubMed ID: 25136633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing a tissue engineered repair material for treatment of stress urinary incontinence and pelvic organ prolapse-which cell source?
    Roman S; Mangera A; Osman NI; Bullock AJ; Chapple CR; MacNeil S
    Neurourol Urodyn; 2014 Jun; 33(5):531-7. PubMed ID: 23868812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing different tissue-engineered repair materials for the treatment of pelvic organ prolapse and urinary incontinence: which material is better?
    Wang X; Chen Y; Fan Z; Hua K
    Int Urogynecol J; 2018 Jan; 29(1):131-138. PubMed ID: 28730531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable scaffolds designed to mimic fascia-like properties for the treatment of pelvic organ prolapse and stress urinary incontinence.
    Roman S; Mangir N; Bissoli J; Chapple CR; MacNeil S
    J Biomater Appl; 2016 May; 30(10):1578-88. PubMed ID: 26896234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periurethral injection of autologous adipose-derived stem cells with controlled-release nerve growth factor for the treatment of stress urinary incontinence in a rat model.
    Zhao W; Zhang C; Jin C; Zhang Z; Kong D; Xu W; Xiu Y
    Eur Urol; 2011 Jan; 59(1):155-63. PubMed ID: 21050657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Tissue Engineering to Pelvic Organ Prolapse and Stress Urinary Incontinence.
    Chapple CR; Osman NI; Mangera A; Hillary C; Roman S; Bullock A; Macneil S
    Low Urin Tract Symptoms; 2015 May; 7(2):63-70. PubMed ID: 26663684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of candidate scaffolds for tissue engineering for stress urinary incontinence and pelvic organ prolapse repair.
    Mangera A; Bullock AJ; Roman S; Chapple CR; MacNeil S
    BJU Int; 2013 Sep; 112(5):674-85. PubMed ID: 23773418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human endometrial mesenchymal stem cells modulate the tissue response and mechanical behavior of polyamide mesh implants for pelvic organ prolapse repair.
    Ulrich D; Edwards SL; Su K; Tan KS; White JF; Ramshaw JA; Lo C; Rosamilia A; Werkmeister JA; Gargett CE
    Tissue Eng Part A; 2014 Feb; 20(3-4):785-98. PubMed ID: 24083684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly (D,L-lactic acid) macroporous guidance scaffolds seeded with Schwann cells genetically modified to secrete a bi-functional neurotrophin implanted in the completely transected adult rat thoracic spinal cord.
    Hurtado A; Moon LD; Maquet V; Blits B; Jérôme R; Oudega M
    Biomaterials; 2006 Jan; 27(3):430-42. PubMed ID: 16102815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-lasting bioresorbable poly(lactic acid) (PLA94) mesh: a new approach for soft tissue reinforcement based on an experimental pilot study.
    de Tayrac R; Oliva-Lauraire MC; Guiraud I; Henry L; Vert M; Mares P
    Int Urogynecol J Pelvic Floor Dysfunct; 2007 Sep; 18(9):1007-14. PubMed ID: 17211529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress Urinary Incontinence and Pelvic Organ Prolapse: Biologic Graft Materials Revisited.
    Whooley J; Cunnane EM; Do Amaral R; Joyce M; MacCraith E; Flood HD; O'Brien FJ; Davis NF
    Tissue Eng Part B Rev; 2020 Oct; 26(5):475-483. PubMed ID: 32192400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating Alternative Materials for the Treatment of Stress Urinary Incontinence and Pelvic Organ Prolapse: A Comparison of the In Vivo Response to Meshes Implanted in Rabbits.
    Roman S; Urbánková I; Callewaert G; Lesage F; Hillary C; Osman NI; Chapple CR; Deprest J; MacNeil S
    J Urol; 2016 Jul; 196(1):261-9. PubMed ID: 26880411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examinations of a new long-term degradable electrospun polycaprolactone scaffold in three rat abdominal wall models.
    Jangö H; Gräs S; Christensen L; Lose G
    J Biomater Appl; 2017 Feb; 31(7):1077-1086. PubMed ID: 28077052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering vascularized soft tissue flaps in an animal model using human adipose-derived stem cells and VEGF+PLGA/PEG microspheres on a collagen-chitosan scaffold with a flow-through vascular pedicle.
    Zhang Q; Hubenak J; Iyyanki T; Alred E; Turza KC; Davis G; Chang EI; Branch-Brooks CD; Beahm EK; Butler CE
    Biomaterials; 2015 Dec; 73():198-213. PubMed ID: 26410787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fascia tissue engineering with human adipose-derived stem cells in a murine model: Implications for pelvic floor reconstruction.
    Hung MJ; Wen MC; Huang YT; Chen GD; Chou MM; Yang VC
    J Formos Med Assoc; 2014 Oct; 113(10):704-15. PubMed ID: 23791005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone tissue engineering by using a combination of polymer/Bioglass composites with human adipose-derived stem cells.
    Lu W; Ji K; Kirkham J; Yan Y; Boccaccini AR; Kellett M; Jin Y; Yang XB
    Cell Tissue Res; 2014 Apr; 356(1):97-107. PubMed ID: 24408074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adipose derived stem cells and platelet rich plasma improve the tissue integration and angiogenesis of biodegradable scaffolds for soft tissue regeneration.
    Naderi N; Griffin MF; Mosahebi A; Butler PE; Seifalian AM
    Mol Biol Rep; 2020 Mar; 47(3):2005-2013. PubMed ID: 32072400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adipose-derived stem cells seeded on polyglycolic acid for the treatment of stress urinary incontinence.
    Wang Y; Shi GW; Wang JH; Cao NL; Fu Q
    World J Urol; 2016 Oct; 34(10):1447-55. PubMed ID: 26743672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage.
    Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Ramakrishna S
    Biomaterials; 2012 Jan; 33(3):846-55. PubMed ID: 22048006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Argon plasma surface modification promotes the therapeutic angiogenesis and tissue formation of tissue-engineered scaffolds in vivo by adipose-derived stem cells.
    Griffin MF; Naderi N; Kalaskar DM; Seifalian AM; Butler PE
    Stem Cell Res Ther; 2019 Mar; 10(1):110. PubMed ID: 30922398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.