These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 25136633)
41. Preparation and characterization of collagen-based ADSC-carrier sheets for cardiovascular application. Araña M; Peña E; Abizanda G; Cilla M; Ochoa I; Gavira JJ; Espinosa G; Doblaré M; Pelacho B; Prosper F Acta Biomater; 2013 Apr; 9(4):6075-83. PubMed ID: 23261927 [TBL] [Abstract][Full Text] [Related]
42. The effect of mesenchymal populations and vascular endothelial growth factor delivered from biodegradable polymer scaffolds on bone formation. Kanczler JM; Ginty PJ; Barry JJ; Clarke NM; Howdle SM; Shakesheff KM; Oreffo RO Biomaterials; 2008 Apr; 29(12):1892-900. PubMed ID: 18234329 [TBL] [Abstract][Full Text] [Related]
43. [Impact of adipose-derived stem cells combined with vascular bundle implantation on vascularized tissue engineering scaffolds in vivo]. Ji W; Yang P; Zhang Y; Wang C; Ni J; Zhang Y; Wang K Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Feb; 26(2):129-34. PubMed ID: 22403872 [TBL] [Abstract][Full Text] [Related]
44. Characterization of human adipose tissue-derived stem cells in vitro culture and in vivo differentiation in a temperature-sensitive chitosan/β- glycerophosphate/collagen hybrid hydrogel. Song K; Li L; Yan X; Zhang W; Zhang Y; Wang Y; Liu T Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):231-240. PubMed ID: 27770886 [TBL] [Abstract][Full Text] [Related]
45. In vitro evaluation of polyester-based scaffolds seeded with adipose derived stem cells for peripheral nerve regeneration. Tse KH; Sun M; Mantovani C; Terenghi G; Downes S; Kingham PJ J Biomed Mater Res A; 2010 Dec; 95(3):701-8. PubMed ID: 20725987 [TBL] [Abstract][Full Text] [Related]
46. Differentiated adipose-derived stem cell cocultures for bone regeneration in polymer scaffolds in vivo. Shah AR; Cornejo A; Guda T; Sahar DE; Stephenson SM; Chang S; Krishnegowda NK; Sharma R; Wang HT J Craniofac Surg; 2014 Jul; 25(4):1504-9. PubMed ID: 24943502 [TBL] [Abstract][Full Text] [Related]
47. In vivo bone formation following transplantation of human adipose-derived stromal cells that are not differentiated osteogenically. Jeon O; Rhie JW; Kwon IK; Kim JH; Kim BS; Lee SH Tissue Eng Part A; 2008 Aug; 14(8):1285-94. PubMed ID: 18593269 [TBL] [Abstract][Full Text] [Related]
48. Collagen-chitosan polymer as a scaffold for the proliferation of human adipose tissue-derived stem cells. Zhu Y; Liu T; Song K; Jiang B; Ma X; Cui Z J Mater Sci Mater Med; 2009 Mar; 20(3):799-808. PubMed ID: 19020954 [TBL] [Abstract][Full Text] [Related]
49. Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone). Jung Y; Park MS; Lee JW; Kim YH; Kim SH; Kim SH Biomaterials; 2008 Dec; 29(35):4630-6. PubMed ID: 18804279 [TBL] [Abstract][Full Text] [Related]
50. Pretreatment with platelet derived growth factor-BB modulates the ability of costochondral resting zone chondrocytes incorporated into PLA/PGA scaffolds to form new cartilage in vivo. Lohmann CH; Schwartz Z; Niederauer GG; Carnes DL; Dean DD; Boyan BD Biomaterials; 2000 Jan; 21(1):49-61. PubMed ID: 10619678 [TBL] [Abstract][Full Text] [Related]
51. Immunoselection and adenoviral genetic modulation of human osteoprogenitors: in vivo bone formation on PLA scaffold. Howard D; Partridge K; Yang X; Clarke NM; Okubo Y; Bessho K; Howdle SM; Shakesheff KM; Oreffo RO Biochem Biophys Res Commun; 2002 Nov; 299(2):208-15. PubMed ID: 12437971 [TBL] [Abstract][Full Text] [Related]
52. Oestradiol-releasing Biodegradable Mesh Stimulates Collagen Production and Angiogenesis: An Approach to Improving Biomaterial Integration in Pelvic Floor Repair. Mangır N; Hillary CJ; Chapple CR; MacNeil S Eur Urol Focus; 2019 Mar; 5(2):280-289. PubMed ID: 28753895 [TBL] [Abstract][Full Text] [Related]
53. Electrospun nanofiber mesh with fibroblast growth factor and stem cells for pelvic floor repair. Hansen SG; Taskin MB; Chen M; Wogensen L; Vinge Nygaard J; Axelsen SM J Biomed Mater Res B Appl Biomater; 2020 Jan; 108(1):48-55. PubMed ID: 30888115 [TBL] [Abstract][Full Text] [Related]
54. A novel strategy of spine defect repair with a degradable bioactive scaffold preloaded with adipose-derived stromal cells. Liang H; Li X; Shimer AL; Balian G; Shen FH Spine J; 2014 Mar; 14(3):445-54. PubMed ID: 24360747 [TBL] [Abstract][Full Text] [Related]
55. Recellularization of well-preserved decellularized kidney scaffold using adipose tissue-derived stem cells. Xue A; Niu G; Chen Y; Li K; Xiao Z; Luan Y; Sun C; Xie X; Zhang D; Du X; Kong F; Guo Y; Zhang H; Cheng G; Xin Q; Guan Y; Zhao S J Biomed Mater Res A; 2018 Mar; 106(3):805-814. PubMed ID: 29067774 [TBL] [Abstract][Full Text] [Related]
56. Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly(lactic acid) scaffolds. Zong C; Qian X; Tang Z; Hu Q; Chen J; Gao C; Tang R; Tong X; Wang J J Biomed Nanotechnol; 2014 Jun; 10(6):1091-104. PubMed ID: 24749403 [TBL] [Abstract][Full Text] [Related]
57. Well-organized neointima of large-pore poly(L-lactic acid) vascular graft coated with poly(L-lactic-co-ε-caprolactone) prevents calcific deposition compared to small-pore electrospun poly(L-lactic acid) graft in a mouse aortic implantation model. Tara S; Kurobe H; Rocco KA; Maxfield MW; Best CA; Yi T; Naito Y; Breuer CK; Shinoka T Atherosclerosis; 2014 Dec; 237(2):684-91. PubMed ID: 25463106 [TBL] [Abstract][Full Text] [Related]
58. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing. Tai H; Mather ML; Howard D; Wang W; White LJ; Crowe JA; Morgan SP; Chandra A; Williams DJ; Howdle SM; Shakesheff KM Eur Cell Mater; 2007 Dec; 14():64-77. PubMed ID: 18085505 [TBL] [Abstract][Full Text] [Related]
59. 3D bioprinted endometrial stem cells on melt electrospun poly ε-caprolactone mesh for pelvic floor application promote anti-inflammatory responses in mice. Paul K; Darzi S; McPhee G; Del Borgo MP; Werkmeister JA; Gargett CE; Mukherjee S Acta Biomater; 2019 Oct; 97():162-176. PubMed ID: 31386931 [TBL] [Abstract][Full Text] [Related]
60. Evaluation of bone marrow stem cell response to PLA scaffolds manufactured by 3D printing and coated with polydopamine and type I collagen. Teixeira BN; Aprile P; Mendonça RH; Kelly DJ; Thiré RMDSM J Biomed Mater Res B Appl Biomater; 2019 Jan; 107(1):37-49. PubMed ID: 29480562 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]