These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25136755)

  • 1. Blocked inverted indices for exact clustering of large chemical spaces.
    Thiel P; Sach-Peltason L; Ottmann C; Kohlbacher O
    J Chem Inf Model; 2014 Sep; 54(9):2395-401. PubMed ID: 25136755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerating two algorithms for large-scale compound selection on GPUs.
    Liao Q; Wang J; Watson IA
    J Chem Inf Model; 2011 May; 51(5):1017-24. PubMed ID: 21526799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fast clustering algorithm for analyzing highly similar compounds of very large libraries.
    Li W
    J Chem Inf Model; 2006; 46(5):1919-23. PubMed ID: 16995722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GPU-accelerated Chemical Similarity Assessment for Large Scale Databases.
    Maggioni M; Santambrogio MD; Liang J
    Procedia Comput Sci; 2011; 4():2007-2016. PubMed ID: 27774113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GPU accelerated chemical similarity calculation for compound library comparison.
    Ma C; Wang L; Xie XQ
    J Chem Inf Model; 2011 Jul; 51(7):1521-7. PubMed ID: 21692447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated similarity searching and clustering of large compound sets by geometric embedding and locality sensitive hashing.
    Cao Y; Jiang T; Girke T
    Bioinformatics; 2010 Apr; 26(7):953-9. PubMed ID: 20179075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-view spectral clustering and its chemical application.
    Adefioye AA; Liu X; De Moor B
    Int J Comput Biol Drug Des; 2013; 6(1-2):32-49. PubMed ID: 23428472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SymDex: increasing the efficiency of chemical fingerprint similarity searches for comparing large chemical libraries by using query set indexing.
    Tai D; Fang J
    J Chem Inf Model; 2012 Aug; 52(8):1926-35. PubMed ID: 22849555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel hash-based EST clustering algorithm for gene sequencing.
    Mudhireddy R; Ercal F; Frank R
    DNA Cell Biol; 2004 Oct; 23(10):615-23. PubMed ID: 15585119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QuBiLS-MIDAS: a parallel free-software for molecular descriptors computation based on multilinear algebraic maps.
    García-Jacas CR; Marrero-Ponce Y; Acevedo-Martínez L; Barigye SJ; Valdés-Martiní JR; Contreras-Torres E
    J Comput Chem; 2014 Jul; 35(18):1395-409. PubMed ID: 24889018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerating chemical database searching using graphics processing units.
    Liu P; Agrafiotis DK; Rassokhin DN; Yang E
    J Chem Inf Model; 2011 Aug; 51(8):1807-16. PubMed ID: 21696144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Library fingerprints: a novel approach to the screening of virtual libraries.
    Klon AE; Diller DJ
    J Chem Inf Model; 2007; 47(4):1354-65. PubMed ID: 17595072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SwiFT: an index structure for reduced graph descriptors in virtual screening and clustering.
    Fischer JR; Rarey M
    J Chem Inf Model; 2007; 47(4):1341-53. PubMed ID: 17567122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fiber Clustering Acceleration With a Modified Kmeans++ Algorithm Using Data Parallelism.
    Goicovich I; Olivares P; Román C; Vázquez A; Poupon C; Mangin JF; Guevara P; Hernández C
    Front Neuroinform; 2021; 15():727859. PubMed ID: 34539370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LEAP into the Pfizer Global Virtual Library (PGVL) space: creation of readily synthesizable design ideas automatically.
    Hu Q; Peng Z; Kostrowicki J; Kuki A
    Methods Mol Biol; 2011; 685():253-76. PubMed ID: 20981528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Database clustering with a combination of fingerprint and maximum common substructure methods.
    Stahl M; Mauser H
    J Chem Inf Model; 2005; 45(3):542-8. PubMed ID: 15921444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fast hierarchical clustering algorithm for large-scale protein sequence data sets.
    Szilágyi SM; Szilágyi L
    Comput Biol Med; 2014 May; 48():94-101. PubMed ID: 24657908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using inverted indices for accelerating LINGO calculations.
    Kristensen TG; Nielsen J; Pedersen CN
    J Chem Inf Model; 2011 Mar; 51(3):597-600. PubMed ID: 21332133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. gWEGA: GPU-accelerated WEGA for molecular superposition and shape comparison.
    Yan X; Li J; Gu Q; Xu J
    J Comput Chem; 2014 Jun; 35(15):1122-30. PubMed ID: 24729358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel clustering algorithm for large-scale biological data sets.
    Wang M; Zhang W; Ding W; Dai D; Zhang H; Xie H; Chen L; Guo Y; Xie J
    PLoS One; 2014; 9(4):e91315. PubMed ID: 24705246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.