These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 25136938)

  • 1. Electrospun polymer mat as a SERS platform for the immobilization and detection of bacteria from fluids.
    Szymborski T; Witkowska E; Adamkiewicz W; Waluk J; Kamińska A
    Analyst; 2014 Oct; 139(20):5061-4. PubMed ID: 25136938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer mat prepared via Forcespinning™ as a SERS platform for immobilization and detection of bacteria from blood plasma.
    Witkowska E; Szymborski T; Kamińska A; Waluk J
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():345-350. PubMed ID: 27987716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Planar monolithic porous polymer layers functionalized with gold nanoparticles as large-area substrates for sensitive surface-enhanced Raman scattering sensing of bacteria.
    Cao Y; Lv M; Xu H; Svec F; Tan T; Lv Y
    Anal Chim Acta; 2015 Oct; 896():111-9. PubMed ID: 26481994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced Raman scattering multifunctional chip.
    Wang H; Zhou Y; Jiang X; Sun B; Zhu Y; Wang H; Su Y; He Y
    Angew Chem Int Ed Engl; 2015 Apr; 54(17):5132-6. PubMed ID: 25820791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS.
    Polavarapu L; Xu QH
    Langmuir; 2008 Oct; 24(19):10608-11. PubMed ID: 18729527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructured silver-gold bimetallic SERS substrates for selective identification of bacteria in human blood.
    Sivanesan A; Witkowska E; Adamkiewicz W; Dziewit Ł; Kamińska A; Waluk J
    Analyst; 2014 Mar; 139(5):1037-43. PubMed ID: 24419003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SERS-encoded nanogapped plasmonic nanoparticles: growth of metallic nanoshell by templating redox-active polymer brushes.
    Song J; Duan B; Wang C; Zhou J; Pu L; Fang Z; Wang P; Lim TT; Duan H
    J Am Chem Soc; 2014 May; 136(19):6838-41. PubMed ID: 24773367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Filter Supported Surface-Enhanced Raman Scattering "Nose" for Point-of-Care Monitoring of Gaseous Metabolites of Bacteria.
    Guo J; Liu Y; Yang Y; Li Y; Wang R; Ju H
    Anal Chem; 2020 Apr; 92(7):5055-5063. PubMed ID: 32129599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transparent Raman-enhancing substrates for microbiological monitoring and in situ pollutant detection.
    Wang HH; Cheng TY; Sharma P; Chiang FY; Chiu SW; Wang JK; Wang YL
    Nanotechnology; 2011 Sep; 22(38):385702. PubMed ID: 21869461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-enhanced Raman spectroscopic detection of a bacteria biomarker using gold nanoparticle immobilized substrates.
    Cheng HW; Huan SY; Wu HL; Shen GL; Yu RQ
    Anal Chem; 2009 Dec; 81(24):9902-12. PubMed ID: 19928907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silver nanorod arrays as a surface-enhanced Raman scattering substrate for foodborne pathogenic bacteria detection.
    Chu H; Huang Y; Zhao Y
    Appl Spectrosc; 2008 Aug; 62(8):922-31. PubMed ID: 18702867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the surface enhanced raman scattering (SERS) of bacteria.
    Premasiri WR; Moir DT; Klempner MS; Krieger N; Jones G; Ziegler LD
    J Phys Chem B; 2005 Jan; 109(1):312-20. PubMed ID: 16851017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-enhanced Raman spectroscopy-based, homogeneous, multiplexed immunoassay with antibody-fragments-decorated gold nanoparticles.
    Wang Y; Tang LJ; Jiang JH
    Anal Chem; 2013 Oct; 85(19):9213-20. PubMed ID: 23998432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aligned gold nanoneedle arrays for surface-enhanced Raman scattering.
    Yang Y; Tanemura M; Huang Z; Jiang D; Li ZY; Huang YP; Kawamura G; Yamaguchi K; Nogami M
    Nanotechnology; 2010 Aug; 21(32):325701. PubMed ID: 20639588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles.
    Gong T; Cui Y; Goh D; Voon KK; Shum PP; Humbert G; Auguste JL; Dinh XQ; Yong KT; Olivo M
    Biosens Bioelectron; 2015 Feb; 64():227-33. PubMed ID: 25222325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars.
    Su Q; Ma X; Dong J; Jiang C; Qian W
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1873-9. PubMed ID: 21528839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Additional amplifications of SERS via an optofluidic CD-based platform.
    Choi D; Kang T; Cho H; Choi Y; Lee LP
    Lab Chip; 2009 Jan; 9(2):239-43. PubMed ID: 19107279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ SERS detection of emulsifiers at lipid interfaces using label-free amphiphilic gold nanoparticles.
    Li Y; Driver M; Winuprasith T; Zheng J; McClements DJ; He L
    Analyst; 2014 Oct; 139(20):5075-8. PubMed ID: 25134491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.