These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25136957)

  • 41. Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents.
    Lartigue L; Hugounenq P; Alloyeau D; Clarke SP; Lévy M; Bacri JC; Bazzi R; Brougham DF; Wilhelm C; Gazeau F
    ACS Nano; 2012 Dec; 6(12):10935-49. PubMed ID: 23167525
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dextran sulfate-coated superparamagnetic iron oxide nanoparticles as a contrast agent for atherosclerosis imaging.
    You DG; Saravanakumar G; Son S; Han HS; Heo R; Kim K; Kwon IC; Lee JY; Park JH
    Carbohydr Polym; 2014 Jan; 101():1225-33. PubMed ID: 24299895
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Self-assembled magnetic fluorescent polymeric micelles for magnetic resonance and optical imaging.
    Yan K; Li H; Li P; Zhu H; Shen J; Yi C; Wu S; Yeung KW; Xu Z; Xu H; Chu PK
    Biomaterials; 2014 Jan; 35(1):344-55. PubMed ID: 24103655
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Acoustic characterization and contrast imaging of microbubbles encapsulated by polymeric shells coated or filled with magnetic nanoparticles.
    Sciallero C; Grishenkov D; Kothapalli SV; Oddo L; Trucco A
    J Acoust Soc Am; 2013 Nov; 134(5):3918-30. PubMed ID: 24180801
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hot-injection synthesis of iron/iron oxide core/shell nanoparticles for T2 contrast enhancement in magnetic resonance imaging.
    Herman DA; Ferguson P; Cheong S; Hermans IF; Ruck BJ; Allan KM; Prabakar S; Spencer JL; Lendrum CD; Tilley RD
    Chem Commun (Camb); 2011 Aug; 47(32):9221-3. PubMed ID: 21761066
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Aminodextran polymer-functionalized reactive magnetic emulsions for potential theranostic applications.
    Lima-Tenório MK; Pineda EAG; Ahmad NM; Agusti G; Manzoor S; Kabbaj D; Fessi H; Elaissari A
    Colloids Surf B Biointerfaces; 2016 Sep; 145():373-381. PubMed ID: 27214787
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Contrast agents: magnetic resonance.
    Burtea C; Laurent S; Vander Elst L; Muller RN
    Handb Exp Pharmacol; 2008; (185 Pt 1):135-65. PubMed ID: 18626802
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Magnetic resonance relaxation properties of superparamagnetic particles.
    Gossuin Y; Gillis P; Hocq A; Vuong QL; Roch A
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2009; 1(3):299-310. PubMed ID: 20049798
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Octapod iron oxide nanoparticles as high-performance T₂ contrast agents for magnetic resonance imaging.
    Zhao Z; Zhou Z; Bao J; Wang Z; Hu J; Chi X; Ni K; Wang R; Chen X; Chen Z; Gao J
    Nat Commun; 2013; 4():2266. PubMed ID: 23903002
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A novel degradable polymeric carrier for selective release and imaging of magnetic nanoparticles.
    Chen D; Li N; Gu H; Xia X; Xu Q; Ge J; Lu J; Li Y
    Chem Commun (Camb); 2010 Sep; 46(36):6708-10. PubMed ID: 20714558
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preparation of polyelectrolyte multilayer coated microbubbles for use as ultrasound contrast agent.
    Xing ZW; Ke HT; Liu SQ; Dail ZF; Wang JR; Liu JB
    Chin Med Sci J; 2008 Jun; 23(2):103-7. PubMed ID: 18686629
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Acidic pH-Activated Gas-Generating Nanoparticles with Pullulan Decorating for Hepatoma-Targeted Ultrasound Imaging.
    Chen S; Xu XL; Zhou B; Tian J; Luo BM; Zhang LM
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22194-22205. PubMed ID: 31199110
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Monodisperse magnetic lecithin-PFP submicron bubbles as dual imaging contrast agents for ultrasound (US) and MRI.
    Waqar H; Riaz R; Ahmed NM; Majeed AI; Abbas SR
    RSC Adv; 2022 Mar; 12(17):10504-10513. PubMed ID: 35425014
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ex Vivo Perfusion-Simulation Measurements of Microbubbles as a Scattering Contrast Agent for Grating-Based X-Ray Dark-Field Imaging.
    Velroyen A; Bech M; Tapfer A; Yaroshenko A; Müller M; Paprottka P; Ingrisch M; Cyran CC; Auweter SD; Nikolaou K; Reiser MF; Pfeiffer F
    PLoS One; 2015; 10(7):e0129512. PubMed ID: 26134130
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultrasound Contrast: Gas Microbubbles in the Vasculature.
    Klibanov AL
    Invest Radiol; 2021 Jan; 56(1):50-61. PubMed ID: 33181574
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Aolymer-encapsulated microbubble contrast agent: preparation and in vitro echogenic characteristics].
    Jin QF; Zhong Y; Luo XL
    Nan Fang Yi Ke Da Xue Xue Bao; 2008 Jan; 28(1):54-6. PubMed ID: 18227027
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design and testing of microbubble-based MRI contrast agents for gastric pressure measurement.
    Abdurakman E; Bencsik M; Cave GWV; Hoad CL; McGowan S; Fairhurst DJ; Major G; Gowland PA; Bowtell R
    Magn Reson Med; 2020 Mar; 83(3):1096-1108. PubMed ID: 31524306
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A general strategy for obtaining biodegradable polymer shelled microbubbles as theranostic devices.
    Capece S; Chiessi E; Cavalli R; Giustetto P; Grishenkov D; Paradossi G
    Chem Commun (Camb); 2013 Jun; 49(51):5763-5. PubMed ID: 23689681
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enzyme-Degradable Hybrid Polymer/Silica Microbubbles as Ultrasound Contrast Agents.
    Tsao NH; Hall EA
    Langmuir; 2016 Jun; 32(25):6534-43. PubMed ID: 27245495
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.