BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25137295)

  • 1. Inhibition of potential uptake pathways for silver nanoparticles in the estuarine snail Peringia ulvae.
    Khan FR; Misra SK; Bury NR; Smith BD; Rainbow PS; Luoma SN; Valsami-Jones E
    Nanotoxicology; 2015 May; 9(4):493-501. PubMed ID: 25137295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioaccumulation dynamics and modeling in an estuarine invertebrate following aqueous exposure to nanosized and dissolved silver.
    Khan FR; Misra SK; García-Alonso J; Smith BD; Strekopytov S; Rainbow PS; Luoma SN; Valsami-Jones E
    Environ Sci Technol; 2012 Jul; 46(14):7621-8. PubMed ID: 22697255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable isotope tracer to determine uptake and efflux dynamics of ZnO Nano- and bulk particles and dissolved Zn to an estuarine snail.
    Khan FR; Laycock A; Dybowska A; Larner F; Smith BD; Rainbow PS; Luoma SN; Rehkämper M; Valsami-Jones E
    Environ Sci Technol; 2013 Aug; 47(15):8532-9. PubMed ID: 23802799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver nanoparticles inhibit sodium uptake in juvenile rainbow trout (Oncorhynchus mykiss).
    Schultz AG; Ong KJ; MacCormack T; Ma G; Veinot JG; Goss GG
    Environ Sci Technol; 2012 Sep; 46(18):10295-301. PubMed ID: 22891970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silver bioaccumulation dynamics in a freshwater invertebrate after aqueous and dietary exposures to nanosized and ionic Ag.
    Croteau MN; Misra SK; Luoma SN; Valsami-Jones E
    Environ Sci Technol; 2011 Aug; 45(15):6600-7. PubMed ID: 21667957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histopathology and analyses of inflammation intensity in the gills of mussels exposed to silver nanoparticles: role of nanoparticle size, exposure time, and uptake pathways.
    Bouallegui Y; Ben Younes R; Bellamine H; Oueslati R
    Toxicol Mech Methods; 2017 Oct; 27(8):582-591. PubMed ID: 28565931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: effect of size, surface coating, and intracellular uptake.
    Prasad RY; McGee JK; Killius MG; Suarez DA; Blackman CF; DeMarini DM; Simmons SO
    Toxicol In Vitro; 2013 Sep; 27(6):2013-21. PubMed ID: 23872425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity.
    Jiang X; Miclăuş T; Wang L; Foldbjerg R; Sutherland DS; Autrup H; Chen C; Beer C
    Nanotoxicology; 2015 Mar; 9(2):181-9. PubMed ID: 24738617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells.
    Greulich C; Diendorf J; Simon T; Eggeler G; Epple M; Köller M
    Acta Biomater; 2011 Jan; 7(1):347-54. PubMed ID: 20709196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioaccumulation but no biomagnification of silver sulfide nanoparticles in freshwater snails and planarians.
    Silva PV; Pinheiro C; Morgado RG; Verweij RA; van Gestel CAM; Loureiro S
    Sci Total Environ; 2022 Feb; 808():151956. PubMed ID: 34843767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dietary bioaccumulation potential of silver nanomaterials compared to silver nitrate in wistar rats using an ex vivo gut sac technique.
    Clark NJ; Woznica W; Handy RD
    Ecotoxicol Environ Saf; 2020 Sep; 200():110745. PubMed ID: 32460051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity and accumulation of silver nanoparticles during development of the marine polychaete Platynereis dumerilii.
    García-Alonso J; Rodriguez-Sanchez N; Misra SK; Valsami-Jones E; Croteau MN; Luoma SN; Rainbow PS
    Sci Total Environ; 2014 Apr; 476-477():688-95. PubMed ID: 24514586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver nanoparticle-specific mitotoxicity in Daphnia magna.
    Stensberg MC; Madangopal R; Yale G; Wei Q; Ochoa-Acuña H; Wei A; McLamore ES; Rickus J; Porterfield DM; Sepúlveda MS
    Nanotoxicology; 2014 Dec; 8(8):833-42. PubMed ID: 23927462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular internalization of silver nanoparticles in gut epithelia of the estuarine polychaete Nereis diversicolor.
    García-Alonso J; Khan FR; Misra SK; Turmaine M; Smith BD; Rainbow PS; Luoma SN; Valsami-Jones E
    Environ Sci Technol; 2011 May; 45(10):4630-6. PubMed ID: 21517067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-dependent internalisation of folate-decorated nanoparticles via the pathways of clathrin and caveolae-mediated endocytosis in ARPE-19 cells.
    Langston Suen WL; Chau Y
    J Pharm Pharmacol; 2014 Apr; 66(4):564-73. PubMed ID: 24635558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake and Distribution of Silver in the Aquatic Plant Landoltia punctata (Duckweed) Exposed to Silver and Silver Sulfide Nanoparticles.
    Stegemeier JP; Colman BP; Schwab F; Wiesner MR; Lowry GV
    Environ Sci Technol; 2017 May; 51(9):4936-4943. PubMed ID: 28383882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential bioaccumulation patterns of nanosized and dissolved silver in a land snail Achatina fulica.
    Chen Y; Si Y; Zhou D; Dang F
    Environ Pollut; 2017 Mar; 222():50-57. PubMed ID: 28089465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver.
    Ivask A; Elbadawy A; Kaweeteerawat C; Boren D; Fischer H; Ji Z; Chang CH; Liu R; Tolaymat T; Telesca D; Zink JI; Cohen Y; Holden PA; Godwin HA
    ACS Nano; 2014 Jan; 8(1):374-86. PubMed ID: 24341736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of nanosilver removal by flocculent and granular sludge and short- and long-term inhibition impacts.
    Gu L; Li Q; Quan X; Cen Y; Jiang X
    Water Res; 2014 Jul; 58():62-70. PubMed ID: 24739670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential protein expression in mussels Mytilus galloprovincialis exposed to nano and ionic Ag.
    Gomes T; Pereira CG; Cardoso C; Bebianno MJ
    Aquat Toxicol; 2013 Jul; 136-137():79-90. PubMed ID: 23665239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.