These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 25137489)

  • 21. Development of chitosan-based nanoparticles through inter-polymeric complexation for oral drug delivery.
    Jana S; Maji N; Nayak AK; Sen KK; Basu SK
    Carbohydr Polym; 2013 Oct; 98(1):870-6. PubMed ID: 23987423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insight on the formation of chitosan nanoparticles through ionotropic gelation with tripolyphosphate.
    Koukaras EN; Papadimitriou SA; Bikiaris DN; Froudakis GE
    Mol Pharm; 2012 Oct; 9(10):2856-62. PubMed ID: 22845012
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A rational approach towards the design of chitosan-based nanoparticles obtained by ionotropic gelation.
    Kleine-Brueggeney H; Zorzi GK; Fecker T; El Gueddari NE; Moerschbacher BM; Goycoolea FM
    Colloids Surf B Biointerfaces; 2015 Nov; 135():99-108. PubMed ID: 26241921
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chitosan nanoparticle as protein delivery carrier--systematic examination of fabrication conditions for efficient loading and release.
    Gan Q; Wang T
    Colloids Surf B Biointerfaces; 2007 Sep; 59(1):24-34. PubMed ID: 17555948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and characterization of cross-linked chitosan microspheres for drug delivery applications.
    Dini E; Alexandridou S; Kiparissides C
    J Microencapsul; 2003; 20(3):375-85. PubMed ID: 12881117
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and characterization of aspirin/chitosan nanoparticles by nucleation and ionic crosslinking in micro emulsions.
    Jin S; Feng L; Yu X
    J Control Release; 2011 Nov; 152 Suppl 1():e39-41. PubMed ID: 22195912
    [No Abstract]   [Full Text] [Related]  

  • 27. Ultrafine chitosan nanoparticles as an efficient nucleic acid delivery system targeting neuronal cells.
    Malhotra M; Kulamarva A; Sebak S; Paul A; Bhathena J; Mirzaei M; Prakash S
    Drug Dev Ind Pharm; 2009 Jun; 35(6):719-26. PubMed ID: 19514987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation, optimization, and in-vitro/in-vivo/ex-vivo characterization of chitosan-heparin nanoparticles: drug-induced gelation.
    Shahbazi MA; Hamidi M; Mohammadi-Samani S
    J Pharm Pharmacol; 2013 Aug; 65(8):1118-33. PubMed ID: 23837580
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chitosan-based nanoparticles as drug delivery systems: a review on two decades of research.
    Naskar S; Koutsu K; Sharma S
    J Drug Target; 2019 Apr; 27(4):379-393. PubMed ID: 30103626
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Platelet compatibility of PLGA, chitosan and PLGA-chitosan nanoparticles.
    Li X; Radomski A; Corrigan OI; Tajber L; De Sousa Menezes F; Endter S; Medina C; Radomski MW
    Nanomedicine (Lond); 2009 Oct; 4(7):735-46. PubMed ID: 19839810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polyelectrolyte nanoparticles based on water-soluble chitosan-poly(L-aspartic acid)-polyethylene glycol for controlled protein release.
    Shu S; Zhang X; Teng D; Wang Z; Li C
    Carbohydr Res; 2009 Jul; 344(10):1197-204. PubMed ID: 19508912
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of chitosan particles suitable for enzyme immobilization.
    Biró E; Németh AS; Sisak C; Feczkó T; Gyenis J
    J Biochem Biophys Methods; 2008 Apr; 70(6):1240-6. PubMed ID: 18155771
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scalable ionic gelation synthesis of chitosan nanoparticles for drug delivery in static mixers.
    Dong Y; Ng WK; Shen S; Kim S; Tan RB
    Carbohydr Polym; 2013 May; 94(2):940-5. PubMed ID: 23544653
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glycyrrhetinic acid-modified chitosan/poly(ethylene glycol) nanoparticles for liver-targeted delivery.
    Tian Q; Zhang CN; Wang XH; Wang W; Huang W; Cha RT; Wang CH; Yuan Z; Liu M; Wan HY; Tang H
    Biomaterials; 2010 Jun; 31(17):4748-56. PubMed ID: 20303163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crosslinked chitosan-dextran sulfate nanoparticle for improved topical ocular drug delivery.
    Chaiyasan W; Srinivas SP; Tiyaboonchai W
    Mol Vis; 2015; 21():1224-34. PubMed ID: 26604662
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The impact of preparation parameters on typical attributes of chitosan-heparin nanohydrogels: particle size, loading efficiency, and drug release.
    Shahbazi MA; Hamidi M
    Drug Dev Ind Pharm; 2013 Nov; 39(11):1774-82. PubMed ID: 23136990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rheological study of chitosan acetate solutions containing chitin nanofibrils.
    Mikešová J; Hašek J; Tishchenko G; Morganti P
    Carbohydr Polym; 2014 Nov; 112():753-7. PubMed ID: 25129805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of preparation parameters on ultra low molecular weight chitosan/hyaluronic acid nanoparticles.
    Nazeri N; Avadi MR; Faramarzi MA; Safarian S; Tavoosidana G; Khoshayand MR; Amani A
    Int J Biol Macromol; 2013 Nov; 62():642-6. PubMed ID: 24099942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and characterization of vanillin-crosslinked chitosan therapeutic bioactive microcarriers.
    Zou Q; Li J; Li Y
    Int J Biol Macromol; 2015 Aug; 79():736-47. PubMed ID: 26051343
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of particle size and encapsulation efficiency of vancomycin nanoparticles by response surface methodology.
    Honary S; Ebrahimi P; Hadianamrei R
    Pharm Dev Technol; 2014 Dec; 19(8):987-98. PubMed ID: 24147898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.