These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25137502)

  • 61. Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices.
    Zhang Y; Xie T; Jiang T; Wei X; Pang S; Wang X; Wang D
    Nanotechnology; 2009 Apr; 20(15):155707. PubMed ID: 19420559
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Core-Shell CdS-Cu₂S Nanorod Array Solar Cells.
    Wong AB; Brittman S; Yu Y; Dasgupta NP; Yang P
    Nano Lett; 2015 Jun; 15(6):4096-101. PubMed ID: 25993088
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Transparent-conducting-oxide nanowire arrays for efficient photoelectrochemical energy conversion.
    Lee S; Park S; Han GS; Kim DH; Noh JH; Cho IS; Jung HS; Hong KS
    Nanoscale; 2014 Aug; 6(15):8649-55. PubMed ID: 24942487
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Phase conversion from hexagonal CuS(y)Se(1-y) to cubic Cu(2-x)S(y)Se(1-y): composition variation, morphology evolution, optical tuning, and solar cell applications.
    Xu J; Yang X; Yang Q; Zhang W; Lee CS
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16352-9. PubMed ID: 25162581
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Fabrication of carbon-coated silicon nanowires and their application in dye-sensitized solar cells.
    Kim J; Lim J; Kim M; Lee HS; Jun Y; Kim D
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18788-94. PubMed ID: 25319204
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A versatile chemical conversion synthesis of Cu2S nanotubes and the photovoltaic activities for dye-sensitized solar cell.
    Shuai X; Shen W; Hou Z; Ke S; Xu C; Jiang C
    Nanoscale Res Lett; 2014; 9(1):513. PubMed ID: 25246878
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Heat-treatment-induced development of the crystalline structure and chemical stoichiometry of a Cu
    Deng J; Zhang P; Li L; Gou Y; Fang J; Lei Y; Song X; Yang Z
    J Colloid Interface Sci; 2020 Nov; 579():805-814. PubMed ID: 32673857
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cadmium Selenide Quantum Dots for Solar Cell Applications: A Review.
    Rahman MM; Karim MR; Alharbi HF; Aldokhayel B; Uzzaman T; Zahir H
    Chem Asian J; 2021 Apr; 16(8):902-921. PubMed ID: 33615706
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Composite counter electrode based on nanoparticulate PbS and carbon black: towards quantum dot-sensitized solar cells with both high efficiency and stability.
    Yang Y; Zhu L; Sun H; Huang X; Luo Y; Li D; Meng Q
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6162-8. PubMed ID: 23075399
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Graphene quantum-dot-doped polypyrrole counter electrode for high-performance dye-sensitized solar cells.
    Chen L; Guo CX; Zhang Q; Lei Y; Xie J; Ee S; Guai G; Song Q; Li CM
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2047-52. PubMed ID: 23448248
    [TBL] [Abstract][Full Text] [Related]  

  • 72. CdS/CdSe quantum dot shell decorated vertical ZnO nanowire arrays by spin-coating-based SILAR for photoelectrochemical cells and quantum-dot-sensitized solar cells.
    Zhang R; Luo QP; Chen HY; Yu XY; Kuang DB; Su CY
    Chemphyschem; 2012 Apr; 13(6):1435-9. PubMed ID: 22431344
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Near infrared absorption of CdSe(x)Te(1-x) alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability.
    Pan Z; Zhao K; Wang J; Zhang H; Feng Y; Zhong X
    ACS Nano; 2013 Jun; 7(6):5215-22. PubMed ID: 23705771
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Rational interface engineering of Cu
    Guan X; Sun X; Feng H; Zhang J; Wen H; Tian W; Zheng D; Yao Y
    Chem Commun (Camb); 2020 Nov; 56(88):13571-13574. PubMed ID: 33151225
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Economical Pt-free catalysts for counter electrodes of dye-sensitized solar cells.
    Wu M; Lin X; Wang Y; Wang L; Guo W; Qi D; Peng X; Hagfeldt A; Grätzel M; Ma T
    J Am Chem Soc; 2012 Feb; 134(7):3419-28. PubMed ID: 22280185
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Hybrid-type quantum-dot cosensitized ZnO nanowire solar cell with enhanced visible-light harvesting.
    Kim H; Jeong H; An TK; Park CE; Yong K
    ACS Appl Mater Interfaces; 2013 Jan; 5(2):268-75. PubMed ID: 23231810
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The importance of the TiO2/quantum dots interface in the recombination processes of quantum dot sensitized solar cells.
    Tachan Z; Hod I; Shalom M; Grinis L; Zaban A
    Phys Chem Chem Phys; 2013 Mar; 15(11):3841-5. PubMed ID: 23400262
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Materials and interfaces in quantum dot sensitized solar cells: challenges, advances and prospects.
    Hod I; Zaban A
    Langmuir; 2014 Jul; 30(25):7264-73. PubMed ID: 24369734
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Selenylation to charge transfer improvement at the counter electrode (CE)/electrolyte interface for nanocrystalline Cu
    Liu ZZ; Li KP; Yang XB; Zhang YQ; Xie ZX; Duan ZQ; Zhou B; Hu YM
    Phys Chem Chem Phys; 2022 Sep; 24(35):21157-21164. PubMed ID: 36039748
    [TBL] [Abstract][Full Text] [Related]  

  • 80. SnS-quantum dot solar cells using novel TiC counter electrode and organic redox couples.
    Guo W; Shen Y; Wu M; Wang L; Wang L; Ma T
    Chemistry; 2012 Jun; 18(25):7862-8. PubMed ID: 22565379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.