BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 25137612)

  • 1. Collagen and related extracellular matrix proteins in atherosclerotic plaque development.
    Shami A; Gonçalves I; Hultgårdh-Nilsson A
    Curr Opin Lipidol; 2014 Oct; 25(5):394-9. PubMed ID: 25137612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macrophage-mediated proteolytic remodeling of the extracellular matrix in atherosclerosis results in neoepitopes: a potential new class of biochemical markers.
    Skjøt-Arkil H; Barascuk N; Register T; Karsdal MA
    Assay Drug Dev Technol; 2010 Oct; 8(5):542-52. PubMed ID: 20662734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascular extracellular matrix in atherosclerosis.
    Chistiakov DA; Sobenin IA; Orekhov AN
    Cardiol Rev; 2013; 21(6):270-88. PubMed ID: 23422022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small entities with large impact: microcalcifications and atherosclerotic plaque vulnerability.
    Hutcheson JD; Maldonado N; Aikawa E
    Curr Opin Lipidol; 2014 Oct; 25(5):327-32. PubMed ID: 25188916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Connective tissue growth factor is associated with a stable atherosclerotic plaque phenotype and is involved in plaque stabilization after stroke.
    Leeuwis JW; Nguyen TQ; Theunissen MG; Peeters W; Goldschmeding R; Pasterkamp G; Vink A
    Stroke; 2010 Dec; 41(12):2979-81. PubMed ID: 20966418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired fibrous repair: a possible contributor to atherosclerotic plaque vulnerability in patients with type II diabetes.
    Edsfeldt A; Gonçalves I; Grufman H; Nitulescu M; Dunér P; Bengtsson E; Mollet IG; Persson A; Nilsson M; Orho-Melander M; Melander O; Björkbacka H; Nilsson J
    Arterioscler Thromb Vasc Biol; 2014 Sep; 34(9):2143-50. PubMed ID: 25035341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibiting extracellular matrix metalloproteinase inducer maybe beneficial for diminishing the atherosclerotic plaque instability.
    Xie S; Nie R; Wang J
    J Postgrad Med; 2009; 55(4):284-6. PubMed ID: 20083879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the role of extracellular matrix proteins to develop biomarkers of plaque vulnerability and outcome.
    Holm Nielsen S; Jonasson L; Kalogeropoulos K; Karsdal MA; Reese-Petersen AL; Auf dem Keller U; Genovese F; Nilsson J; Goncalves I
    J Intern Med; 2020 May; 287(5):493-513. PubMed ID: 32012358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of altered extracellular matrix in surface layers of unstable carotid plaque: an optical spectroscopy, birefringence and microarray genetic analysis.
    Korol RM; Canham PB; Liu L; Viswanathan K; Ferguson GG; Hammond RR; Finlay HM; Baker HV; Lopez C; Lucas AR
    Photochem Photobiol; 2011; 87(5):1164-72. PubMed ID: 21699546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of oncostatin-M in ECM remodeling and plaque vulnerability.
    Patel P; Rai V; Agrawal DK
    Mol Cell Biochem; 2023 Nov; 478(11):2451-2460. PubMed ID: 36856919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNA regulation of extracellular matrix components in the process of atherosclerotic plaque destabilization.
    Kowara M; Cudnoch-Jedrzejewska A; Opolski G; Wlodarski P
    Clin Exp Pharmacol Physiol; 2017 Jul; 44(7):711-718. PubMed ID: 28440887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of Matrix Vesicles Mediating Calcification Transition in Diabetic Plaque.
    Wang Z; Zhang L; Sun Z; Shao C; Li Y; Bao Z; Jing L; Geng Y; Gu W; Pang Q; Li L; Yan J
    Heart Lung Circ; 2020 Jan; 29(1):112-117. PubMed ID: 31230870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteinases and plaque rupture: unblocking the road to translation.
    Newby AC
    Curr Opin Lipidol; 2014 Oct; 25(5):358-66. PubMed ID: 25089553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular imaging of the extracellular matrix in the context of atherosclerosis.
    Reimann C; Brangsch J; Colletini F; Walter T; Hamm B; Botnar RM; Makowski MR
    Adv Drug Deliv Rev; 2017 Apr; 113():49-60. PubMed ID: 27639968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Matricellular proteins in atherosclerosis development.
    Pervaiz N; Kathuria I; Aithabathula RV; Singla B
    Matrix Biol; 2023 Jun; 120():1-23. PubMed ID: 37086928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collagenase matrix metalloproteinase-8 expressed in atherosclerotic carotid plaques is associated with systemic cardiovascular outcome.
    Peeters W; Moll FL; Vink A; van der Spek PJ; de Kleijn DP; de Vries JP; Verheijen JH; Newby AC; Pasterkamp G
    Eur Heart J; 2011 Sep; 32(18):2314-25. PubMed ID: 21289041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mouse models of plaque rupture.
    Matoba T; Sato K; Egashira K
    Curr Opin Lipidol; 2013 Oct; 24(5):419-25. PubMed ID: 23942269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thrombosis formation on atherosclerotic lesions and plaque rupture.
    Badimon L; Vilahur G
    J Intern Med; 2014 Dec; 276(6):618-32. PubMed ID: 25156650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Matrix metalloproteinases: influence on smooth muscle cells and atherosclerotic plaque stability.
    Johnson JL
    Expert Rev Cardiovasc Ther; 2007 Mar; 5(2):265-82. PubMed ID: 17338671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different Approaches in Therapy Aiming to Stabilize an Unstable Atherosclerotic Plaque.
    Kowara M; Cudnoch-Jedrzejewska A
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33919446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.