BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 25137740)

  • 1. New techniques for mining frequent patterns in unordered trees.
    Zhang S; Du Z; Wang JT
    IEEE Trans Cybern; 2015 Jun; 45(6):1113-25. PubMed ID: 25137740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing an A* algorithm for calculating edit distance between rooted-unordered trees.
    Horesh Y; Mehr R; Unger R
    J Comput Biol; 2006; 13(6):1165-76. PubMed ID: 16901235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An optimal algorithm for computing all subtree repeats in trees.
    Flouri T; Kobert K; Pissis SP; Stamatakis A
    Philos Trans A Math Phys Eng Sci; 2014 May; 372(2016):20130140. PubMed ID: 24751873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A clique-based method for the edit distance between unordered trees and its application to analysis of glycan structures.
    Fukagawa D; Tamura T; Takasu A; Tomita E; Akutsu T
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S13. PubMed ID: 21342542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unrooted unordered homeomorphic subtree alignment of RNA trees.
    Milo N; Zakov S; Katzenelson E; Bachmat E; Dinitz Y; Ziv-Ukelson M
    Algorithms Mol Biol; 2013 Apr; 8(1):13. PubMed ID: 23590940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A clique-based method using dynamic programming for computing edit distance between unordered trees.
    Mori T; Tamura T; Fukagawa D; Takasu A; Tomita E; Akutsu T
    J Comput Biol; 2012 Oct; 19(10):1089-104. PubMed ID: 23057820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enumerating all maximal frequent subtrees in collections of phylogenetic trees.
    Deepak A; Fernández-Baca D
    Algorithms Mol Biol; 2014; 9():16. PubMed ID: 25061474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SwiFT: an index structure for reduced graph descriptors in virtual screening and clustering.
    Fischer JR; Rarey M
    J Chem Inf Model; 2007; 47(4):1341-53. PubMed ID: 17567122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient discovery of risk patterns in medical data.
    Li J; Fu AW; Fahey P
    Artif Intell Med; 2009 Jan; 45(1):77-89. PubMed ID: 18783927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A scalable method for identifying frequent subtrees in sets of large phylogenetic trees.
    Ramu A; Kahveci T; Burleigh JG
    BMC Bioinformatics; 2012 Oct; 13():256. PubMed ID: 23033843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mining significant tree patterns in carbohydrate sugar chains.
    Hashimoto K; Takigawa I; Shiga M; Kanehisa M; Mamitsuka H
    Bioinformatics; 2008 Aug; 24(16):i167-73. PubMed ID: 18689820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mining association rules with multiple minimum supports: a new mining algorithm and a support tuning mechanism.
    Hu YH; Chen YL
    Decis Support Syst; 2006 Oct; 42(1):1-24. PubMed ID: 32287563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two metrics on rooted unordered trees with labels.
    Wang Y
    Algorithms Mol Biol; 2022 Jun; 17(1):13. PubMed ID: 35668521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finding maximum colorful subtrees in practice.
    Rauf I; Rasche F; Nicolas F; Böcker S
    J Comput Biol; 2013 Apr; 20(4):311-21. PubMed ID: 23509858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovering metric temporal constraint networks on temporal databases.
    Álvarez MR; Félix P; Cariñena P
    Artif Intell Med; 2013 Jul; 58(3):139-54. PubMed ID: 23660232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mining frequent subtrees in glycan data using the RINGS glycan miner tool.
    Aoki-Kinoshita KF
    Methods Mol Biol; 2013; 939():87-95. PubMed ID: 23192543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On Hill et al's conjecture for calculating the subtree prune and regraft distance between phylogenies.
    Linz S
    BMC Evol Biol; 2010 Oct; 10():334. PubMed ID: 21034464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PARM--an efficient algorithm to mine association rules from spatial data.
    Ding Q; Ding Q; Perrizo W
    IEEE Trans Syst Man Cybern B Cybern; 2008 Dec; 38(6):1513-24. PubMed ID: 19022723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequent patterns mining in multiple biological sequences.
    Chen L; Liu W
    Comput Biol Med; 2013 Oct; 43(10):1444-52. PubMed ID: 24034736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confabulation-inspired association rule mining for rare and frequent itemsets.
    Soltani A; Akbarzadeh-T MR
    IEEE Trans Neural Netw Learn Syst; 2014 Nov; 25(11):2053-64. PubMed ID: 25330428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.