These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 25138139)
1. Sensitivity and false alarm rate of a fall sensor in long-term fall detection in the elderly. Kangas M; Korpelainen R; Vikman I; Nyberg L; Jämsä T Gerontology; 2015; 61(1):61-8. PubMed ID: 25138139 [TBL] [Abstract][Full Text] [Related]
2. Validation of accuracy of SVM-based fall detection system using real-world fall and non-fall datasets. Aziz O; Klenk J; Schwickert L; Chiari L; Becker C; Park EJ; Mori G; Robinovitch SN PLoS One; 2017; 12(7):e0180318. PubMed ID: 28678808 [TBL] [Abstract][Full Text] [Related]
3. A Low-Power Fall Detector Balancing Sensitivity and False Alarm Rate. Wang C; Lu W; Redmond SJ; Stevens MC; Lord SR; Lovell NH IEEE J Biomed Health Inform; 2018 Nov; 22(6):1929-1937. PubMed ID: 29990072 [TBL] [Abstract][Full Text] [Related]
4. A new method to estimate the real upper limit of the false alarm rate in a 3 accelerometry-based fall detector for the elderly. Soaz C; Lederer C; Daumer M Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():244-7. PubMed ID: 23365876 [TBL] [Abstract][Full Text] [Related]
5. Human fall detection on embedded platform using depth maps and wireless accelerometer. Kwolek B; Kepski M Comput Methods Programs Biomed; 2014 Dec; 117(3):489-501. PubMed ID: 25308505 [TBL] [Abstract][Full Text] [Related]
6. Hidden Markov Model-Based Fall Detection With Motion Sensor Orientation Calibration: A Case for Real-Life Home Monitoring. Yu S; Chen H; Brown RA IEEE J Biomed Health Inform; 2018 Nov; 22(6):1847-1853. PubMed ID: 29990227 [TBL] [Abstract][Full Text] [Related]
7. Sensor technologies aiming at fall prevention in institutionalized old adults: a synthesis of current knowledge. Kosse NM; Brands K; Bauer JM; Hortobagyi T; Lamoth CJ Int J Med Inform; 2013 Sep; 82(9):743-52. PubMed ID: 23845790 [TBL] [Abstract][Full Text] [Related]
8. Evaluation under real-life conditions of a stand-alone fall detector for the elderly subjects. Bloch F; Gautier V; Noury N; Lundy JE; Poujaud J; Claessens YE; Rigaud AS Ann Phys Rehabil Med; 2011 Sep; 54(6):391-8. PubMed ID: 21903502 [TBL] [Abstract][Full Text] [Related]
9. Multimodal sensor-based fall detection within the domestic environment of elderly people. Feldwieser F; Gietzelt M; Goevercin M; Marschollek M; Meis M; Winkelbach S; Wolf KH; Spehr J; Steinhagen-Thiessen E Z Gerontol Geriatr; 2014 Dec; 47(8):661-5. PubMed ID: 25112402 [TBL] [Abstract][Full Text] [Related]
10. Wavelet-Based Sit-To-Stand Detection and Assessment of Fall Risk in Older People Using a Wearable Pendant Device. Ejupi A; Brodie M; Lord SR; Annegarn J; Redmond SJ; Delbaere K IEEE Trans Biomed Eng; 2017 Jul; 64(7):1602-1607. PubMed ID: 28113226 [TBL] [Abstract][Full Text] [Related]
11. HONEY: a multimodality fall detection and telecare system. Zhang Q; Ren L; Shi W Telemed J E Health; 2013 May; 19(5):415-29. PubMed ID: 23537382 [TBL] [Abstract][Full Text] [Related]
12. Sensitivity and specificity of fall detection in people aged 40 years and over. Kangas M; Vikman I; Wiklander J; Lindgren P; Nyberg L; Jämsä T Gait Posture; 2009 Jun; 29(4):571-4. PubMed ID: 19153043 [TBL] [Abstract][Full Text] [Related]
13. User-based motion sensing and fuzzy logic for automated fall detection in older adults. Boissy P; Choquette S; Hamel M; Noury N Telemed J E Health; 2007 Dec; 13(6):683-93. PubMed ID: 18092929 [TBL] [Abstract][Full Text] [Related]
14. Development and alarm threshold evaluation of a side rail integrated sensor technology for the prevention of falls. Hilbe J; Schulc E; Linder B; Them C Int J Med Inform; 2010 Mar; 79(3):173-80. PubMed ID: 20083427 [TBL] [Abstract][Full Text] [Related]
15. Accelerometer-Based Fall Detection Using Machine Learning: Training and Testing on Real-World Falls. Palmerini L; Klenk J; Becker C; Chiari L Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33202738 [TBL] [Abstract][Full Text] [Related]
17. Optimization and Technical Validation of the AIDE-MOI Fall Detection Algorithm in a Real-Life Setting with Older Adults. Scheurer S; Koch J; Kucera M; Bryn H; Bärtschi M; Meerstetter T; Nef T; Urwyler P Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30889925 [TBL] [Abstract][Full Text] [Related]
18. Comparison of real-life accidental falls in older people with experimental falls in middle-aged test subjects. Kangas M; Vikman I; Nyberg L; Korpelainen R; Lindblom J; Jämsä T Gait Posture; 2012 Mar; 35(3):500-5. PubMed ID: 22169389 [TBL] [Abstract][Full Text] [Related]
19. Defining the user requirements for wearable and optical fall prediction and fall detection devices for home use. Gövercin M; Költzsch Y; Meis M; Wegel S; Gietzelt M; Spehr J; Winkelbach S; Marschollek M; Steinhagen-Thiessen E Inform Health Soc Care; 2010; 35(3-4):177-87. PubMed ID: 21133771 [TBL] [Abstract][Full Text] [Related]
20. Assessing the Feasibility of Augmenting Fall Detection Systems by Relying on UWB-Based Position Tracking and a Home Robot. Capra M; Sapienza S; Motto Ros P; Serrani A; Martina M; Puiatti A; Bonato P; Demarchi D Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]