BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 25138250)

  • 1. Enhancement in bioavailability of ketorolac tromethamine via intranasal in situ hydrogel based on poloxamer 407 and carrageenan.
    Li C; Li C; Liu Z; Li Q; Yan X; Liu Y; Lu W
    Int J Pharm; 2014 Oct; 474(1-2):123-33. PubMed ID: 25138250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nasal delivery of analgesic ketorolac tromethamine thermo- and ion-sensitive in situ hydrogels.
    Li X; Du L; Chen X; Ge P; Wang Y; Fu Y; Sun H; Jiang Q; Jin Y
    Int J Pharm; 2015 Jul; 489(1-2):252-60. PubMed ID: 25957699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced brain targeting of curcumin by intranasal administration of a thermosensitive poloxamer hydrogel.
    Chen X; Zhi F; Jia X; Zhang X; Ambardekar R; Meng Z; Paradkar AR; Hu Y; Yang Y
    J Pharm Pharmacol; 2013 Jun; 65(6):807-16. PubMed ID: 23647674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive in situ gel for prolonged ocular delivery.
    Morsi N; Ghorab D; Refai H; Teba H
    Int J Pharm; 2016 Jun; 506(1-2):57-67. PubMed ID: 27091293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poloxamer-based thermoresponsive ketorolac tromethamine in situ gel preparations: Design, characterisation, toxicity and transcorneal permeation studies.
    M A Fathalla Z; Vangala A; Longman M; Khaled KA; Hussein AK; El-Garhy OH; Alany RG
    Eur J Pharm Biopharm; 2017 May; 114():119-134. PubMed ID: 28126392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of carrageenan on poloxamer-based in situ gel for vaginal use: Improved in vitro and in vivo sustained-release properties.
    Liu Y; Zhu YY; Wei G; Lu WY
    Eur J Pharm Sci; 2009 Jun; 37(3-4):306-12. PubMed ID: 19491020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel formulation of ketorolac tromethamine for intranasal administration: preclinical safety evaluation.
    Boyer KC; McDonald P; Zoetis T
    Int J Toxicol; 2010; 29(5):467-78. PubMed ID: 20884857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of intranasal ketorolac tromethamine pharmacokinetics in younger and older adults.
    Bullingham R; Juan A
    Drugs Aging; 2012 Nov; 29(11):899-904. PubMed ID: 23143939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development, characterization and application of in situ gel systems for intranasal delivery of tacrine.
    Qian S; Wong YC; Zuo Z
    Int J Pharm; 2014 Jul; 468(1-2):272-82. PubMed ID: 24709220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustained release of ketorolac tromethamine from poloxamer 407/cellulose nanofibrils graft nanocollagen based ophthalmic formulations.
    Orasugh JT; Dutta S; Das D; Pal C; Zaman A; Das S; Dutta K; Banerjee R; Ghosh SK; Chattopadhyay D
    Int J Biol Macromol; 2019 Nov; 140():441-453. PubMed ID: 31437512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced bioavailability of metoclopramide HCl by intranasal administration of a mucoadhesive in situ gel with modulated rheological and mucociliary transport properties.
    Zaki NM; Awad GA; Mortada ND; Abd Elhady SS
    Eur J Pharm Sci; 2007 Dec; 32(4-5):296-307. PubMed ID: 17920822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pharmacokinetics of ketorolac after single postoperative intranasal administration in adolescent patients.
    Drover DR; Hammer GB; Anderson BJ
    Anesth Analg; 2012 Jun; 114(6):1270-6. PubMed ID: 22467894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and evaluation of nasal formulations of ketorolac.
    Quadir M; Zia H; Needham TE
    Drug Deliv; 2000; 7(4):223-9. PubMed ID: 11195429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing Transdermal Applications of Ketorolac Tromethamine Entrapped in Stimuli Sensitive Block Copolymer Hydrogels.
    Mallandrich M; Fernández-Campos F; Clares B; Halbaut L; Alonso C; Coderch L; Garduño-Ramírez ML; Andrade B; Del Pozo A; Lane ME; Calpena AC
    Pharm Res; 2017 Aug; 34(8):1728-1740. PubMed ID: 28540502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulmonary and nasal deposition of ketorolac tromethamine solution (SPRIX) following intranasal administration.
    Bacon R; Newman S; Rankin L; Pitcairn G; Whiting R
    Int J Pharm; 2012 Jul; 431(1-2):39-44. PubMed ID: 22525081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of methyl cellulose on gelation behavior and drug release from poloxamer based ophthalmic formulations.
    Dewan M; Bhowmick B; Sarkar G; Rana D; Bain MK; Bhowmik M; Chattopadhyay D
    Int J Biol Macromol; 2015 Jan; 72():706-10. PubMed ID: 25256549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nasal formulations of ketorolac tromethamine: technological evaluation--bioavailability and tolerability in rabbits.
    Santus G; Rivolta R; Bottoni G; Testa B; Canali S; Peano S
    Farmaco; 1993 Dec; 48(12):1709-23. PubMed ID: 8135994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of salts on gelation and drug release profiles of methylcellulose-based ophthalmic thermo-reversible in situ gels.
    Bhowmik M; Bain MK; Ghosh LK; Chattopadhyay D
    Pharm Dev Technol; 2011 Aug; 16(4):385-91. PubMed ID: 20429816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and evaluation of bioadhesive in-situ nasal gel of ketorolac tromethamine.
    Chelladurai S; Mishra M; Mishra B
    Chem Pharm Bull (Tokyo); 2008 Nov; 56(11):1596-9. PubMed ID: 18981612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Controlled Release and Anti-Inflammatory Activity of a Tetramethylpyrazine-Loaded Thermosensitive Poloxamer Hydrogel.
    Xia H; Jin H; Cheng Y; Cheng Z; Xu Y
    Pharm Res; 2019 Feb; 36(4):52. PubMed ID: 30783816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.