BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25138576)

  • 1. Telomere-centric genome repatterning determines recurring chromosome number reductions during the evolution of eukaryotes.
    Wang X; Jin D; Wang Z; Guo H; Zhang L; Wang L; Li J; Paterson AH
    New Phytol; 2015 Jan; 205(1):378-89. PubMed ID: 25138576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of evolutionary trajectories of chromosomes unraveled independent genomic repatterning between Triticeae and Brachypodium.
    Wang Z; Wang J; Pan Y; Lei T; Ge W; Wang L; Zhang L; Li Y; Zhao K; Liu T; Song X; Zhang J; Yu J; Hu J; Wang X
    BMC Genomics; 2019 Mar; 20(1):180. PubMed ID: 30845910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae.
    Luo MC; Deal KR; Akhunov ED; Akhunova AR; Anderson OD; Anderson JA; Blake N; Clegg MT; Coleman-Derr D; Conley EJ; Crossman CC; Dubcovsky J; Gill BS; Gu YQ; Hadam J; Heo HY; Huo N; Lazo G; Ma Y; Matthews DE; McGuire PE; Morrell PL; Qualset CO; Renfro J; Tabanao D; Talbert LE; Tian C; Toleno DM; Warburton ML; You FM; Zhang W; Dvorak J
    Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15780-5. PubMed ID: 19717446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea.
    Tran TD; Cao HX; Jovtchev G; Neumann P; Novák P; Fojtová M; Vu GT; Macas J; Fajkus J; Schubert I; Fuchs J
    Plant J; 2015 Dec; 84(6):1087-99. PubMed ID: 26485466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosomes associate premeiotically and in xylem vessel cells via their telomeres and centromeres in diploid rice ( Oryza sativa).
    Prieto P; Santos AP; Moore G; Shaw P
    Chromosoma; 2004 Mar; 112(6):300-7. PubMed ID: 15007655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deciphering recursive polyploidization in Lamiales and reconstructing their chromosome evolutionary trajectories.
    Wang J; Song B; Yang M; Hu F; Qi H; Zhang H; Jia Y; Li Y; Wang Z; Wang X
    Plant Physiol; 2024 Jun; 195(3):2143-2157. PubMed ID: 38482951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A BAC end view of the Musa acuminata genome.
    Cheung F; Town CD
    BMC Plant Biol; 2007 Jun; 7():29. PubMed ID: 17562019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organisation of the plant genome in chromosomes.
    Heslop-Harrison JS; Schwarzacher T
    Plant J; 2011 Apr; 66(1):18-33. PubMed ID: 21443620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing.
    Belser C; Baurens FC; Noel B; Martin G; Cruaud C; Istace B; Yahiaoui N; Labadie K; Hřibová E; Doležel J; Lemainque A; Wincker P; D'Hont A; Aury JM
    Commun Biol; 2021 Sep; 4(1):1047. PubMed ID: 34493830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast diploidization in close mesopolyploid relatives of Arabidopsis.
    Mandáková T; Joly S; Krzywinski M; Mummenhoff K; Lysak MA
    Plant Cell; 2010 Jul; 22(7):2277-90. PubMed ID: 20639445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution.
    Jankowska M; Fuchs J; Klocke E; Fojtová M; Polanská P; Fajkus J; Schubert V; Houben A
    Chromosoma; 2015 Dec; 124(4):519-28. PubMed ID: 26062516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of chromosome number evolution in yeast.
    Gordon JL; Byrne KP; Wolfe KH
    PLoS Genet; 2011 Jul; 7(7):e1002190. PubMed ID: 21811419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recurrent sequence exchange between homeologous grass chromosomes.
    Wicker T; Wing RA; Schubert I
    Plant J; 2015 Nov; 84(4):747-59. PubMed ID: 26408412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Duplication and DNA segmental loss in the rice genome: implications for diploidization.
    Wang X; Shi X; Hao B; Ge S; Luo J
    New Phytol; 2005 Mar; 165(3):937-46. PubMed ID: 15720704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Island species radiation and karyotypic stasis in Pachycladon allopolyploids.
    Mandáková T; Heenan PB; Lysak MA
    BMC Evol Biol; 2010 Nov; 10():367. PubMed ID: 21114825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An updated explanation of ancestral karyotype changes and reconstruction of evolutionary trajectories to form Camelina sativa chromosomes.
    Zhang Z; Meng F; Sun P; Yuan J; Gong K; Liu C; Wang W; Wang X
    BMC Genomics; 2020 Oct; 21(1):705. PubMed ID: 33045990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rice genome organization: the centromere and genome interactions.
    Kurata N; Nonomura K; Harushima Y
    Ann Bot; 2002 Oct; 90(4):427-35. PubMed ID: 12324265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Pharus latifolius genome bridges the gap of early grass evolution.
    Ma PF; Liu YL; Jin GH; Liu JX; Wu H; He J; Guo ZH; Li DZ
    Plant Cell; 2021 May; 33(4):846-864. PubMed ID: 33630094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for an ancient whole-genome duplication event in rice and other cereals.
    Tian CG; Xiong YQ; Liu TY; Sun SH; Chen LB; Chen MS
    Yi Chuan Xue Bao; 2005 May; 32(5):519-27. PubMed ID: 16018264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosome landmarks as tools to study the genome of Arabidopsis thaliana.
    Siroky J
    Cytogenet Genome Res; 2008; 120(3-4):202-9. PubMed ID: 18504348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.