These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 25138654)

  • 1. Stiff muscle fibers in calf muscles of patients with cerebral palsy lead to high passive muscle stiffness.
    Mathewson MA; Chambers HG; Girard PJ; Tenenhaus M; Schwartz AK; Lieber RL
    J Orthop Res; 2014 Dec; 32(12):1667-74. PubMed ID: 25138654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collagen architecture and biomechanics of gracilis and adductor longus muscles from children with cerebral palsy.
    Wohlgemuth RP; Kulkarni VA; Villalba M; Davids JR; Smith LR
    J Physiol; 2024 Jul; 602(14):3489-3504. PubMed ID: 39008710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hamstring contractures in children with spastic cerebral palsy result from a stiffer extracellular matrix and increased in vivo sarcomere length.
    Smith LR; Lee KS; Ward SR; Chambers HG; Lieber RL
    J Physiol; 2011 May; 589(Pt 10):2625-39. PubMed ID: 21486759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles.
    Prado LG; Makarenko I; Andresen C; Krüger M; Opitz CA; Linke WA
    J Gen Physiol; 2005 Nov; 126(5):461-80. PubMed ID: 16230467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive tension of rat skeletal soleus muscle fibers: effects of unloading conditions.
    Toursel T; Stevens L; Granzier H; Mounier Y
    J Appl Physiol (1985); 2002 Apr; 92(4):1465-72. PubMed ID: 11896011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stiffness of hip adductor myofibrils is decreased in children with spastic cerebral palsy.
    Leonard TR; Howard JJ; Larkin-Kaiser K; Joumaa V; Logan K; Orlik B; El-Hawary R; Gauthier L; Herzog W
    J Biomech; 2019 Apr; 87():100-106. PubMed ID: 30853092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleotide-dependent contractile properties of Ca(2+)-activated fast and slow skeletal muscle fibers.
    Wahr PA; Cantor HC; Metzger JM
    Biophys J; 1997 Feb; 72(2 Pt 1):822-34. PubMed ID: 9017207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive stiffness changes in soleus muscles from desmin knockout mice are not due to titin modifications.
    Anderson J; Joumaa V; Stevens L; Neagoe C; Li Z; Mounier Y; Linke WA; Goubel F
    Pflugers Arch; 2002 Sep; 444(6):771-6. PubMed ID: 12355177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of neural and mechanical influences in maintaining normal fast and slow muscle properties.
    Ohira Y; Yoshinaga T; Ohara M; Kawano F; Wang XD; Higo Y; Terada M; Matsuoka Y; Roy RR; Edgerton VR
    Cells Tissues Organs; 2006; 182(3-4):129-42. PubMed ID: 16914916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resting tension characteristics in differentiating intact rat fast- and slow-twitch muscle fibers.
    Mutungi G; Trinick J; Ranatunga KW
    J Appl Physiol (1985); 2003 Dec; 95(6):2241-7. PubMed ID: 12937034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuro-musculoskeletal simulation of instrumented contracture and spasticity assessment in children with cerebral palsy.
    van der Krogt MM; Bar-On L; Kindt T; Desloovere K; Harlaar J
    J Neuroeng Rehabil; 2016 Jul; 13(1):64. PubMed ID: 27423898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of fiber type on force depression after active shortening in skeletal muscle.
    Joumaa V; Power GA; Hisey B; Caicedo A; Stutz J; Herzog W
    J Biomech; 2015 Jul; 48(10):1687-92. PubMed ID: 26091619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spastic muscle cells are shorter and stiffer than normal cells.
    Fridén J; Lieber RL
    Muscle Nerve; 2003 Feb; 27(2):157-64. PubMed ID: 12548522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical parameters of the molecular motor myosin II determined in permeabilised fibres from slow and fast skeletal muscles of the rabbit.
    Percario V; Boncompagni S; Protasi F; Pertici I; Pinzauti F; Caremani M
    J Physiol; 2018 Apr; 596(7):1243-1257. PubMed ID: 29148051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle contracture and passive mechanics in cerebral palsy.
    Lieber RL; Fridén J
    J Appl Physiol (1985); 2019 May; 126(5):1492-1501. PubMed ID: 30571285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional properties of slow and fast gastrocnemius muscle fibers after a 17-day spaceflight.
    Widrick JJ; Romatowski JG; Norenberg KM; Knuth ST; Bain JL; Riley DA; Trappe SW; Trappe TA; Costill DL; Fitts RH
    J Appl Physiol (1985); 2001 Jun; 90(6):2203-11. PubMed ID: 11356784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High resolution muscle measurements provide insights into equinus contractures in patients with cerebral palsy.
    Mathewson MA; Ward SR; Chambers HG; Lieber RL
    J Orthop Res; 2015 Jan; 33(1):33-9. PubMed ID: 25242618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From single muscle fiber to whole muscle mechanics: a finite element model of a muscle bundle with fast and slow fibers.
    Marcucci L; Reggiani C; Natali AN; Pavan PG
    Biomech Model Mechanobiol; 2017 Dec; 16(6):1833-1843. PubMed ID: 28584973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sarcomere length changes during end-held (isometric) contractions in intact mammalian (rat) fast and slow muscle fibres.
    Mutungi G; Ranatunga KW
    J Muscle Res Cell Motil; 2000; 21(6):565-75. PubMed ID: 11206134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental changes in the activation properties and ultrastructure of fast- and slow-twitch muscles from fetal sheep.
    West JM; Barclay CJ; Luff AR; Walker DW
    J Muscle Res Cell Motil; 1999 Apr; 20(3):249-64. PubMed ID: 10471989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.