These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 2513885)

  • 1. Phenylalanine-to-tyrosine singlet energy transfer in the archaebacterial histone-like protein HTa.
    Searcy DG; Montenay-Garestier T; Hélène C
    Biochemistry; 1989 Nov; 28(23):9058-65. PubMed ID: 2513885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A histone-like protein (HTa) from Thermoplasma acidophilum. I. Purification and properties.
    DeLange RJ; Green GR; Searcy DG
    J Biol Chem; 1981 Jan; 256(2):900-4. PubMed ID: 7451480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the excited-state lifetimes of the tryptophan residues in barnase, via multifrequency phase fluorometry of tryptophan mutants.
    Willaert K; Loewenthal R; Sancho J; Froeyen M; Fersht A; Engelborghs Y
    Biochemistry; 1992 Jan; 31(3):711-6. PubMed ID: 1731927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfer of singlet energy within trypsin.
    Ghiron CA; Longworth JW
    Biochemistry; 1979 Aug; 18(17):3828-32. PubMed ID: 476091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanosecond-pulse fluorimetry of wheat-germ agglutinin (lectin).
    Privat JP; Wahl P; Monsigny M; Auchet JC
    Eur J Biochem; 1976 Sep; 68(2):573-80. PubMed ID: 976274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved single tryptophan fluorescence in photoactive yellow protein monitors changes in the chromophore structure during the photocycle via energy transfer.
    Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP
    Biochemistry; 2005 Dec; 44(51):16804-16. PubMed ID: 16363794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved fluorescence of the two tryptophans in horse liver alcohol dehydrogenase.
    Ross JB; Schmidt CJ; Brand L
    Biochemistry; 1981 Jul; 20(15):4369-77. PubMed ID: 7025898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone-like protein in the Archaebacterium Sulfolobus acidocaldarius.
    Green GR; Searcy DG; DeLange RJ
    Biochim Biophys Acta; 1983 Nov; 741(2):251-7. PubMed ID: 6418207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanosecond pulse fluorometry of conformational change in phenylalanine hydroxylase associated with activation.
    Koizumi S; Tanaka F; Kaneda N; Kano K; Nagatsu T
    Biochemistry; 1988 Jan; 27(2):640-6. PubMed ID: 3349052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The intrinsic tyrosine fluorescence of histone H1. Steady state and fluorescence decay studies reveal heterogeneous emission.
    Libertini LJ; Small EW
    Biophys J; 1985 Jun; 47(6):765-72. PubMed ID: 4016197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rare protein fluorescence behavior where the emission is dominated by tyrosine: case of the 33-kDa protein from spinach photosystem II.
    Ruan K; Li J; Liang R; Xu C; Yu Y; Lange R; Balny C
    Biochem Biophys Res Commun; 2002 Apr; 293(1):593-7. PubMed ID: 12054643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the structural determinants of the intrinsic fluorescence emission of the trp repressor using single tryptophan mutants.
    Royer CA
    Biophys J; 1992 Sep; 63(3):741-50. PubMed ID: 1420911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitation energy transfer from phycobiliprotein to chlorophyll d in intact cells of Acaryochloris marina studied by time- and wavelength-resolved fluorescence spectroscopy.
    Petrásek Z; Schmitt FJ; Theiss C; Huyer J; Chen M; Larkum A; Eichler HJ; Kemnitz K; Eckert HJ
    Photochem Photobiol Sci; 2005 Dec; 4(12):1016-22. PubMed ID: 16307116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of pH on aqueous phenylalanine studied using a 265-nm pulsed light-emitting diode.
    Macmillan AM; McGuinness CD; Sagoo K; McLoskey D; Pickup JC; Birch DJ
    Ann N Y Acad Sci; 2008; 1130():300-4. PubMed ID: 18596363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-step energy transfer enables use of phenylalanine in action-EET for distance constraint determination in gaseous biomolecules.
    Hendricks NG; Julian RR
    Chem Commun (Camb); 2015 Aug; 51(64):12720-3. PubMed ID: 26120605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the excited-state energy transfer between tryptophan residues in proteins: the case of penicillin acylase.
    Ercelen S; Kazan D; Erarslan A; Demchenko AP
    Biophys Chem; 2001 May; 90(3):203-17. PubMed ID: 11407639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence and excitation Escherichia coli RecA protein spectra analyzed separately for tyrosine and tryptophan residues.
    Isaev-Ivanov VV; Kozlov MG; Baitin DM; Masui R; Kuramitsu S; Lanzov VA
    Arch Biochem Biophys; 2000 Apr; 376(1):124-40. PubMed ID: 10729198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A type II DNA-binding protein genetically engineered for fluorescence spectroscopy: the "arm" of transcription factor 1 binds in the DNA grooves.
    Härd T; Sayre MH; Geiduschek EP; Kearns DR
    Biochemistry; 1989 Apr; 28(7):2813-9. PubMed ID: 2742813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium binding to calmodulin mutants monitored by domain-specific intrinsic phenylalanine and tyrosine fluorescence.
    VanScyoc WS; Sorensen BR; Rusinova E; Laws WR; Ross JB; Shea MA
    Biophys J; 2002 Nov; 83(5):2767-80. PubMed ID: 12414709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new approach to interpretation of heterogeneity of fluorescence decay: effect of induced tautomeric shift and enzyme-->ligand fluorescence resonance energy transfer.
    Wlodarczyk J; Kierdaszuk B
    Biophys Chem; 2006 Sep; 123(2-3):146-53. PubMed ID: 16765509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.