These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 25138962)
1. Maximizing binding capacity for protein A chromatography. Ghose S; Zhang J; Conley L; Caple R; Williams KP; Cecchini D Biotechnol Prog; 2014; 30(6):1335-40. PubMed ID: 25138962 [TBL] [Abstract][Full Text] [Related]
2. Exploration of overloaded cation exchange chromatography for monoclonal antibody purification. Liu HF; McCooey B; Duarte T; Myers DE; Hudson T; Amanullah A; van Reis R; Kelley BD J Chromatogr A; 2011 Sep; 1218(39):6943-52. PubMed ID: 21871630 [TBL] [Abstract][Full Text] [Related]
3. A comparison of protein A chromatographic stationary phases: performance characteristics for monoclonal antibody purification. Liu Z; Mostafa SS; Shukla AA Biotechnol Appl Biochem; 2015; 62(1):37-47. PubMed ID: 24823474 [TBL] [Abstract][Full Text] [Related]
4. Protein A affinity chromatography of Chinese hamster ovary (CHO) cell culture broths containing biopharmaceutical monoclonal antibody (mAb): Experiments and mechanistic transport, binding and equilibrium modeling. Grom M; Kozorog M; Caserman S; Pohar A; Likozar B J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Apr; 1083():44-56. PubMed ID: 29522957 [TBL] [Abstract][Full Text] [Related]
5. Protein A chromatography at high titers. Natarajan V; Zydney AL Biotechnol Bioeng; 2013 Sep; 110(9):2445-51. PubMed ID: 23519596 [TBL] [Abstract][Full Text] [Related]
6. Designing new monoclonal antibody purification processes using mixed-mode chromatography sorbents. Toueille M; Uzel A; Depoisier JF; Gantier R J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Apr; 879(13-14):836-43. PubMed ID: 21439915 [TBL] [Abstract][Full Text] [Related]
7. Studying host cell protein interactions with monoclonal antibodies using high throughput protein A chromatography. Sisodiya VN; Lequieu J; Rodriguez M; McDonald P; Lazzareschi KP Biotechnol J; 2012 Oct; 7(10):1233-41. PubMed ID: 22623327 [TBL] [Abstract][Full Text] [Related]
8. Choices of capture chromatography technology in antibody manufacturing processes. DiLeo M; Ley A; Nixon AE; Chen J J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Nov; 1068-1069():136-148. PubMed ID: 29069629 [TBL] [Abstract][Full Text] [Related]
9. Improving affinity chromatography resin efficiency using semi-continuous chromatography. Mahajan E; George A; Wolk B J Chromatogr A; 2012 Mar; 1227():154-62. PubMed ID: 22265178 [TBL] [Abstract][Full Text] [Related]
10. Use and optimization of a dual-flowrate loading strategy to maximize throughput in protein-a affinity chromatography. Ghose S; Nagrath D; Hubbard B; Brooks C; Cramer SM Biotechnol Prog; 2004; 20(3):830-40. PubMed ID: 15176889 [TBL] [Abstract][Full Text] [Related]
11. Protein aggregation kinetics during Protein A chromatography. Case study for an Fc fusion protein. Shukla AA; Gupta P; Han X J Chromatogr A; 2007 Nov; 1171(1-2):22-8. PubMed ID: 17920607 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of high-capacity cation exchange chromatography for direct capture of monoclonal antibodies from high-titer cell culture processes. Tao Y; Ibraheem A; Conley L; Cecchini D; Ghose S Biotechnol Bioeng; 2014 Jul; 111(7):1354-64. PubMed ID: 24420791 [TBL] [Abstract][Full Text] [Related]
13. Feasibility of using continuous chromatography in downstream processing: Comparison of costs and product quality for a hybrid process vs. a conventional batch process. Ötes O; Flato H; Winderl J; Hubbuch J; Capito F J Biotechnol; 2017 Oct; 259():213-220. PubMed ID: 28684321 [TBL] [Abstract][Full Text] [Related]
14. Novel peptide ligands for antibody purification provide superior clearance of host cell protein impurities. Reese HR; Xiao X; Shanahan CC; Chu W; Van Den Driessche GA; Fourches D; Carbonell RG; Hall CK; Menegatti S J Chromatogr A; 2020 Aug; 1625():461237. PubMed ID: 32709313 [TBL] [Abstract][Full Text] [Related]
15. Quantitation of soluble aggregates in recombinant monoclonal antibody cell culture by pH-gradient protein A chromatography. Pan H; Chen K; Pulisic M; Apostol I; Huang G Anal Biochem; 2009 May; 388(2):273-8. PubMed ID: 19268420 [TBL] [Abstract][Full Text] [Related]
16. Comparison of standard and new generation hydrophobic interaction chromatography resins in the monoclonal antibody purification process. Chen J; Tetrault J; Ley A J Chromatogr A; 2008 Jan; 1177(2):272-81. PubMed ID: 17709111 [TBL] [Abstract][Full Text] [Related]
17. Design of a filter train for precipitate removal in monoclonal antibody downstream processing. Kandula S; Babu S; Jin M; Shukla AA Biotechnol Appl Biochem; 2009 Oct; 54(3):149-55. PubMed ID: 19656082 [TBL] [Abstract][Full Text] [Related]
18. Removal of B. cereus cereulide toxin from monoclonal antibody bioprocess feed via two-step Protein A affinity and multimodal chromatography. Wetterhall M; Grönberg A; Grönlund S; Björkman T; Sandberg L; Musunuri S; Chaloupka K; Gammell P J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Jun; 1118-1119():194-202. PubMed ID: 31059926 [TBL] [Abstract][Full Text] [Related]
19. High-throughput mAb expression and purification platform based on transient CHO. Barnard GC; Hougland MD; Rajendra Y Biotechnol Prog; 2015; 31(1):239-47. PubMed ID: 25403790 [TBL] [Abstract][Full Text] [Related]
20. Two-dimensional fluorescence difference gel electrophoresis for comparison of affinity and non-affinity based downstream processing of recombinant monoclonal antibody. Grzeskowiak JK; Tscheliessnig A; Toh PC; Chusainow J; Lee YY; Wong N; Jungbauer A J Chromatogr A; 2009 Jun; 1216(24):4902-12. PubMed ID: 19423113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]