BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 25138962)

  • 1. Maximizing binding capacity for protein A chromatography.
    Ghose S; Zhang J; Conley L; Caple R; Williams KP; Cecchini D
    Biotechnol Prog; 2014; 30(6):1335-40. PubMed ID: 25138962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploration of overloaded cation exchange chromatography for monoclonal antibody purification.
    Liu HF; McCooey B; Duarte T; Myers DE; Hudson T; Amanullah A; van Reis R; Kelley BD
    J Chromatogr A; 2011 Sep; 1218(39):6943-52. PubMed ID: 21871630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of protein A chromatographic stationary phases: performance characteristics for monoclonal antibody purification.
    Liu Z; Mostafa SS; Shukla AA
    Biotechnol Appl Biochem; 2015; 62(1):37-47. PubMed ID: 24823474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein A affinity chromatography of Chinese hamster ovary (CHO) cell culture broths containing biopharmaceutical monoclonal antibody (mAb): Experiments and mechanistic transport, binding and equilibrium modeling.
    Grom M; Kozorog M; Caserman S; Pohar A; Likozar B
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Apr; 1083():44-56. PubMed ID: 29522957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein A chromatography at high titers.
    Natarajan V; Zydney AL
    Biotechnol Bioeng; 2013 Sep; 110(9):2445-51. PubMed ID: 23519596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing new monoclonal antibody purification processes using mixed-mode chromatography sorbents.
    Toueille M; Uzel A; Depoisier JF; Gantier R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Apr; 879(13-14):836-43. PubMed ID: 21439915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studying host cell protein interactions with monoclonal antibodies using high throughput protein A chromatography.
    Sisodiya VN; Lequieu J; Rodriguez M; McDonald P; Lazzareschi KP
    Biotechnol J; 2012 Oct; 7(10):1233-41. PubMed ID: 22623327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Choices of capture chromatography technology in antibody manufacturing processes.
    DiLeo M; Ley A; Nixon AE; Chen J
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Nov; 1068-1069():136-148. PubMed ID: 29069629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving affinity chromatography resin efficiency using semi-continuous chromatography.
    Mahajan E; George A; Wolk B
    J Chromatogr A; 2012 Mar; 1227():154-62. PubMed ID: 22265178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use and optimization of a dual-flowrate loading strategy to maximize throughput in protein-a affinity chromatography.
    Ghose S; Nagrath D; Hubbard B; Brooks C; Cramer SM
    Biotechnol Prog; 2004; 20(3):830-40. PubMed ID: 15176889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein aggregation kinetics during Protein A chromatography. Case study for an Fc fusion protein.
    Shukla AA; Gupta P; Han X
    J Chromatogr A; 2007 Nov; 1171(1-2):22-8. PubMed ID: 17920607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of high-capacity cation exchange chromatography for direct capture of monoclonal antibodies from high-titer cell culture processes.
    Tao Y; Ibraheem A; Conley L; Cecchini D; Ghose S
    Biotechnol Bioeng; 2014 Jul; 111(7):1354-64. PubMed ID: 24420791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of using continuous chromatography in downstream processing: Comparison of costs and product quality for a hybrid process vs. a conventional batch process.
    Ötes O; Flato H; Winderl J; Hubbuch J; Capito F
    J Biotechnol; 2017 Oct; 259():213-220. PubMed ID: 28684321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel peptide ligands for antibody purification provide superior clearance of host cell protein impurities.
    Reese HR; Xiao X; Shanahan CC; Chu W; Van Den Driessche GA; Fourches D; Carbonell RG; Hall CK; Menegatti S
    J Chromatogr A; 2020 Aug; 1625():461237. PubMed ID: 32709313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitation of soluble aggregates in recombinant monoclonal antibody cell culture by pH-gradient protein A chromatography.
    Pan H; Chen K; Pulisic M; Apostol I; Huang G
    Anal Biochem; 2009 May; 388(2):273-8. PubMed ID: 19268420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of standard and new generation hydrophobic interaction chromatography resins in the monoclonal antibody purification process.
    Chen J; Tetrault J; Ley A
    J Chromatogr A; 2008 Jan; 1177(2):272-81. PubMed ID: 17709111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a filter train for precipitate removal in monoclonal antibody downstream processing.
    Kandula S; Babu S; Jin M; Shukla AA
    Biotechnol Appl Biochem; 2009 Oct; 54(3):149-55. PubMed ID: 19656082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of B. cereus cereulide toxin from monoclonal antibody bioprocess feed via two-step Protein A affinity and multimodal chromatography.
    Wetterhall M; Grönberg A; Grönlund S; Björkman T; Sandberg L; Musunuri S; Chaloupka K; Gammell P
    J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Jun; 1118-1119():194-202. PubMed ID: 31059926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput mAb expression and purification platform based on transient CHO.
    Barnard GC; Hougland MD; Rajendra Y
    Biotechnol Prog; 2015; 31(1):239-47. PubMed ID: 25403790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional fluorescence difference gel electrophoresis for comparison of affinity and non-affinity based downstream processing of recombinant monoclonal antibody.
    Grzeskowiak JK; Tscheliessnig A; Toh PC; Chusainow J; Lee YY; Wong N; Jungbauer A
    J Chromatogr A; 2009 Jun; 1216(24):4902-12. PubMed ID: 19423113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.