These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 25139276)
1. Evidence for a radial strain gradient in apple fruit cuticles. Khanal BP; Knoche M; Bußler S; Schlüter O Planta; 2014 Oct; 240(4):891-7. PubMed ID: 25139276 [TBL] [Abstract][Full Text] [Related]
2. Direct Evidence for a Radial Gradient in Age of the Apple Fruit Cuticle. Si Y; Khanal BP; Schlüter OK; Knoche M Front Plant Sci; 2021; 12():730837. PubMed ID: 34745165 [TBL] [Abstract][Full Text] [Related]
3. Mismatch between cuticle deposition and area expansion in fruit skins allows potentially catastrophic buildup of elastic strain. Lai X; Khanal BP; Knoche M Planta; 2016 Nov; 244(5):1145-1156. PubMed ID: 27469168 [TBL] [Abstract][Full Text] [Related]
4. Intracuticular wax fixes and restricts strain in leaf and fruit cuticles. Khanal BP; Grimm E; Finger S; Blume A; Knoche M New Phytol; 2013 Oct; 200(1):134-143. PubMed ID: 23750808 [TBL] [Abstract][Full Text] [Related]
5. Patterns of microcracking in apple fruit skin reflect those of the cuticular ridges and of the epidermal cell walls. Knoche M; Khanal BP; Brüggenwirth M; Thapa S Planta; 2018 Aug; 248(2):293-306. PubMed ID: 29705975 [TBL] [Abstract][Full Text] [Related]
6. Optical properties and contribution of cuticle to UV protection in plants: experiments with apple fruit. Solovchenko A; Merzlyak M Photochem Photobiol Sci; 2003 Aug; 2(8):861-6. PubMed ID: 14521223 [TBL] [Abstract][Full Text] [Related]
7. Non destructive analysis of the wax layer of apple (Malus domestica Borkh.) by means of confocal laser scanning microscopy. Veraverbeke EA; Van Bruaene N; Van Oostveldt P; Nicolaï BM Planta; 2001 Aug; 213(4):525-33. PubMed ID: 11556784 [TBL] [Abstract][Full Text] [Related]
8. The structure of the fruit peel in two varieties of Malus domestica Borkh. (Rosaceae) before and after storage. Konarska A Protoplasma; 2013 Jun; 250(3):701-14. PubMed ID: 22996687 [TBL] [Abstract][Full Text] [Related]
9. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier. Zeisler V; Schreiber L Planta; 2016 Jan; 243(1):65-81. PubMed ID: 26341347 [TBL] [Abstract][Full Text] [Related]
10. Ontogenetic variation in chemical and physical characteristics of adaxial apple leaf surfaces. Bringe K; Schumacher CF; Schmitz-Eiberger M; Steiner U; Oerke EC Phytochemistry; 2006 Jan; 67(2):161-70. PubMed ID: 16321411 [TBL] [Abstract][Full Text] [Related]
11. Epicuticular wax on leaf cuticles does not establish the transpiration barrier, which is essentially formed by intracuticular wax. Zeisler-Diehl V; Müller Y; Schreiber L J Plant Physiol; 2018 Aug; 227():66-74. PubMed ID: 29653782 [TBL] [Abstract][Full Text] [Related]
12. Lenticels are sites of initiation of microcracking and russeting in 'Apple' mango. Athoo TO; Winkler A; Owino WO; Knoche M PLoS One; 2023; 18(9):e0291129. PubMed ID: 37656754 [TBL] [Abstract][Full Text] [Related]
13. McWRI1, a transcription factor of the AP2/SHEN family, regulates the biosynthesis of the cuticular waxes on the apple fruit surface under low temperature. Hao S; Ma Y; Zhao S; Ji Q; Zhang K; Yang M; Yao Y PLoS One; 2017; 12(10):e0186996. PubMed ID: 29073205 [TBL] [Abstract][Full Text] [Related]
14. Scratching the surface: genetic regulation of cuticle assembly in fleshy fruit. Hen-Avivi S; Lashbrooke J; Costa F; Aharoni A J Exp Bot; 2014 Aug; 65(16):4653-64. PubMed ID: 24916070 [TBL] [Abstract][Full Text] [Related]
15. Effect of surface waxes on the persistence of chlorpyrifos-methyl in apples, strawberries and grapefruits. Riccio R; Trevisan M; Capri E Food Addit Contam; 2006 Jul; 23(7):683-92. PubMed ID: 16751145 [TBL] [Abstract][Full Text] [Related]
16. Transcriptomic and Gas Chromatography-Mass Spectrometry Metabolomic Profiling Analysis of the Epidermis Provides Insights into Cuticular Wax Regulation in Developing 'Yuluxiang' Pear Fruit. Wu X; Shi X; Bai M; Chen Y; Li X; Qi K; Cao P; Li M; Yin H; Zhang S J Agric Food Chem; 2019 Jul; 67(30):8319-8331. PubMed ID: 31287308 [TBL] [Abstract][Full Text] [Related]
17. Variations in Triterpenoid Deposition in Cuticular Waxes during Development and Maturation of Selected Fruits of Rosaceae Family. Dashbaldan S; Pączkowski C; Szakiel A Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33371323 [TBL] [Abstract][Full Text] [Related]
18. Tomato (Lycopersicon esculentum Mill.) fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle. Bargel H; Neinhuis C J Exp Bot; 2005 Mar; 56(413):1049-60. PubMed ID: 15710631 [TBL] [Abstract][Full Text] [Related]
19. Studies on water transport through the sweet cherry fruit surface: II. Conductance of the cuticle in relation to fruit development. Knoche M; Peschel S; Hinz M; Bukovac MJ Planta; 2001 Oct; 213(6):927-36. PubMed ID: 11722129 [TBL] [Abstract][Full Text] [Related]
20. Effect of Surface Roughness in Model and Fresh Fruit Systems on Microbial Inactivation Efficacy of Cold Atmospheric Pressure Plasma. Bhide S; Salvi D; Schaffner DW; Karwe MV J Food Prot; 2017 Aug; 80(8):1337-1346. PubMed ID: 28708029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]