These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25139797)

  • 1. Metabolomic analysis of extreme freezing tolerance in Siberian spruce (Picea obovata).
    Angelcheva L; Mishra Y; Antti H; Kjellsen TD; Funk C; Strimbeck RG; Schröder WP
    New Phytol; 2014 Nov; 204(3):545-555. PubMed ID: 25139797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dehydrin accumulation and extreme low-temperature tolerance in Siberian spruce (Picea obovata).
    Kjellsen TD; Yakovlev IA; Fossdal CG; Strimbeck GR
    Tree Physiol; 2013 Dec; 33(12):1354-66. PubMed ID: 24336613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomics of extreme freezing tolerance in Siberian spruce (Picea obovata).
    Kjellsen TD; Shiryaeva L; Schröder WP; Strimbeck GR
    J Proteomics; 2010 Mar; 73(5):965-75. PubMed ID: 20067847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic dynamics during autumn cold acclimation within and among populations of Sitka spruce (Picea sitchensis).
    Dauwe R; Holliday JA; Aitken SN; Mansfield SD
    New Phytol; 2012 Apr; 194(1):192-205. PubMed ID: 22248127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Norway spruce deploys tissue-specific responses during acclimation to cold.
    Vergara A; Haas JC; Aro T; Stachula P; Street NR; Hurry V
    Plant Cell Environ; 2022 Feb; 45(2):427-445. PubMed ID: 34873720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of low-temperature acclimation in temperate and boreal conifer foliage in a mild winter climate.
    Strimbeck GR; Kjellsen TD; Schaberg PG; Murakami PF
    Tree Physiol; 2008 Sep; 28(9):1365-74. PubMed ID: 18595849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global monitoring of autumn gene expression within and among phenotypically divergent populations of Sitka spruce (Picea sitchensis).
    Holliday JA; Ralph SG; White R; Bohlmann J; Aitken SN
    New Phytol; 2008; 178(1):103-122. PubMed ID: 18194148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolite profiling during cold acclimation of Lolium perenne genotypes distinct in the level of frost tolerance.
    Bocian A; Zwierzykowski Z; Rapacz M; Koczyk G; Ciesiołka D; Kosmala A
    J Appl Genet; 2015 Nov; 56(4):439-449. PubMed ID: 26025228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cold-regulated proteins with potent antifreeze and cryoprotective activities in spruces (Picea spp.).
    Jarzabek M; Pukacki PM; Nuc K
    Cryobiology; 2009 Jun; 58(3):268-74. PubMed ID: 19444972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing the frost sensitivity of black spruce photosynthesis during cold acclimation.
    Gaumont-Guay D; Margolis HA; Bigras FJ; Raulier F
    Tree Physiol; 2003 Apr; 23(5):301-11. PubMed ID: 12615545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cold acclimation and freezing tolerance in three Eucalyptus species: A metabolomic and proteomic approach.
    Oberschelp GPJ; Guarnaschelli AB; Teson N; Harrand L; Podestá FE; Margarit E
    Plant Physiol Biochem; 2020 Sep; 154():316-327. PubMed ID: 32593088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteome dynamics of cold-acclimating Rhododendron species contrasting in their freezing tolerance and thermonasty behavior.
    Die JV; Arora R; Rowland LJ
    PLoS One; 2017; 12(5):e0177389. PubMed ID: 28542212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of polyamines in the cold acclimation response.
    Alcázar R; Cuevas JC; Planas J; Zarza X; Bortolotti C; Carrasco P; Salinas J; Tiburcio AF; Altabella T
    Plant Sci; 2011 Jan; 180(1):31-8. PubMed ID: 21421344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of bud burst forcing on transcript expression of selected genes in needles of Norway spruce during autumn.
    Asante DK; Yakovlev IA; Fossdal CG; Timmerhaus G; Partanen J; Johnsen O
    Plant Physiol Biochem; 2009 Aug; 47(8):681-9. PubMed ID: 19356941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cold acclimation induces freezing tolerance via antioxidative enzymes, proline metabolism and gene expression changes in two chrysanthemum species.
    Chen Y; Jiang J; Chang Q; Gu C; Song A; Chen S; Dong B; Chen F
    Mol Biol Rep; 2014 Feb; 41(2):815-22. PubMed ID: 24413987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pair-wise multicomparison and OPLS analyses of cold-acclimation phases in Siberian spruce.
    Shiryaeva L; Antti H; Schröder WP; Strimbeck R; Shiriaev AS
    Metabolomics; 2012 Jun; 8(Suppl 1):123-130. PubMed ID: 22593724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acclimation of entomopathogenic nematodes to novel temperatures: trehalose accumulation and the acquisition of thermotolerance.
    Jagdale GB; Grewal PS
    Int J Parasitol; 2003 Feb; 33(2):145-52. PubMed ID: 12633652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in freezing tolerance, plasma membrane H+-ATPase activity and fatty acid composition in Pinus resinosa needles during cold acclimation and de-acclimation.
    Martz F; Sutinen ML; Kiviniemi S; Palta JP
    Tree Physiol; 2006 Jun; 26(6):783-90. PubMed ID: 16510394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An atlas of the Norway spruce needle seasonal transcriptome.
    Bag P; Lihavainen J; Delhomme N; Riquelme T; Robinson KM; Jansson S
    Plant J; 2021 Dec; 108(6):1815-1829. PubMed ID: 34624161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harder, better, faster, stronger: Frost tolerance of Eucalyptus benthamii under cold acclimation.
    Oberschelp GPJ; Morales LL; Montecchiarini ML; Harrand L; Podestá FE; Margarit E
    Plant Physiol Biochem; 2022 Sep; 186():64-75. PubMed ID: 35810688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.