These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 25139903)

  • 61. Spatiotemporal Analysis of DNA Integration during Natural Transformation Reveals a Mode of Nongenetic Inheritance in Bacteria.
    Dalia AB; Dalia TN
    Cell; 2019 Dec; 179(7):1499-1511.e10. PubMed ID: 31835029
    [TBL] [Abstract][Full Text] [Related]  

  • 62. DNA uptake in bacteria.
    Dubnau D
    Annu Rev Microbiol; 1999; 53():217-44. PubMed ID: 10547691
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Pilus Production in Acinetobacter baumannii Is Growth Phase Dependent and Essential for Natural Transformation.
    Vesel N; Blokesch M
    J Bacteriol; 2021 Mar; 203(8):. PubMed ID: 33495250
    [No Abstract]   [Full Text] [Related]  

  • 64. Two steps away from novelty--principles of bacterial DNA uptake.
    Krüger NJ; Stingl K
    Mol Microbiol; 2011 May; 80(4):860-7. PubMed ID: 21435041
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The Dynamics of Genetic Interactions between Vibrio metoecus and Vibrio cholerae, Two Close Relatives Co-Occurring in the Environment.
    Orata FD; Kirchberger PC; Méheust R; Barlow EJ; Tarr CL; Boucher Y
    Genome Biol Evol; 2015 Oct; 7(10):2941-54. PubMed ID: 26454015
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Genetics of stress adaptation and virulence in toxigenic Vibrio cholerae.
    Faruque SM; Nair GB; Mekalanos JJ
    DNA Cell Biol; 2004 Nov; 23(11):723-41. PubMed ID: 15585131
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Structure-function studies reveal ComEA contains an oligomerization domain essential for transformation in gram-positive bacteria.
    Ahmed I; Hahn J; Henrickson A; Khaja FT; Demeler B; Dubnau D; Neiditch MB
    Nat Commun; 2022 Dec; 13(1):7724. PubMed ID: 36513643
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Genes for breakfast: the have-your-cake-and-eat-it-too of bacterial transformation.
    Redfield RJ
    J Hered; 1993; 84(5):400-4. PubMed ID: 8409360
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Characterization of the Vibrio cholerae Phage Shock Protein Response.
    DeAngelis CM; Nag D; Withey JH; Matson JS
    J Bacteriol; 2019 Jul; 201(14):. PubMed ID: 30858296
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Outer Membrane Vesicles of Vibrio cholerae Protect and Deliver Active Cholera Toxin to Host Cells via Porin-Dependent Uptake.
    Zingl FG; Thapa HB; Scharf M; Kohl P; Müller AM; Schild S
    mBio; 2021 Jun; 12(3):e0053421. PubMed ID: 34076466
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Chitin disaccharide (GlcNAc)2 induces natural competence in Vibrio cholerae through transcriptional and translational activation of a positive regulatory gene tfoXVC.
    Yamamoto S; Morita M; Izumiya H; Watanabe H
    Gene; 2010 Jun; 457(1-2):42-9. PubMed ID: 20302923
    [TBL] [Abstract][Full Text] [Related]  

  • 72. CryoEM structure of the type IVa pilus secretin required for natural competence in Vibrio cholerae.
    Weaver SJ; Ortega DR; Sazinsky MH; Dalia TN; Dalia AB; Jensen GJ
    Nat Commun; 2020 Oct; 11(1):5080. PubMed ID: 33033258
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Evolutionary dynamics of Vibrio cholerae O1 following a single-source introduction to Haiti.
    Katz LS; Petkau A; Beaulaurier J; Tyler S; Antonova ES; Turnsek MA; Guo Y; Wang S; Paxinos EE; Orata F; Gladney LM; Stroika S; Folster JP; Rowe L; Freeman MM; Knox N; Frace M; Boncy J; Graham M; Hammer BK; Boucher Y; Bashir A; Hanage WP; Van Domselaar G; Tarr CL
    mBio; 2013 Jul; 4(4):. PubMed ID: 23820394
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Chitin colonization, chitin degradation and chitin-induced natural competence of Vibrio cholerae are subject to catabolite repression.
    Blokesch M
    Environ Microbiol; 2012 Aug; 14(8):1898-912. PubMed ID: 22222000
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The Na+-Translocating NADH:Quinone Oxidoreductase Enhances Oxidative Stress in the Cytoplasm of Vibrio cholerae.
    Muras V; Dogaru-Kinn P; Minato Y; Häse CC; Steuber J
    J Bacteriol; 2016 Sep; 198(17):2307-17. PubMed ID: 27325677
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Horizontal gene transfer of a genetic island encoding a type III secretion system distributed in Vibrio cholerae.
    Morita M; Yamamoto S; Hiyoshi H; Kodama T; Okura M; Arakawa E; Alam M; Ohnishi M; Izumiya H; Watanabe H
    Microbiol Immunol; 2013 May; 57(5):334-9. PubMed ID: 23668604
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Natural Cotransformation and Multiplex Genome Editing by Natural Transformation (MuGENT) of Vibrio cholerae.
    Dalia AB
    Methods Mol Biol; 2018; 1839():53-64. PubMed ID: 30047054
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Microbiology. Chitin, cholera, and competence.
    Bartlett DH; Azam F
    Science; 2005 Dec; 310(5755):1775-7. PubMed ID: 16357249
    [No Abstract]   [Full Text] [Related]  

  • 79. Catechol Siderophore Transport by Vibrio cholerae.
    Wyckoff EE; Allred BE; Raymond KN; Payne SM
    J Bacteriol; 2015 Sep; 197(17):2840-9. PubMed ID: 26100039
    [TBL] [Abstract][Full Text] [Related]  

  • 80. General secretion pathway (eps) genes required for toxin secretion and outer membrane biogenesis in Vibrio cholerae.
    Sandkvist M; Michel LO; Hough LP; Morales VM; Bagdasarian M; Koomey M; DiRita VJ; Bagdasarian M
    J Bacteriol; 1997 Nov; 179(22):6994-7003. PubMed ID: 9371445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.