These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 25139948)
1. Deletion of the Synechocystis sp. PCC 6803 kaiAB1C1 gene cluster causes impaired cell growth under light-dark conditions. Dörrich AK; Mitschke J; Siadat O; Wilde A Microbiology (Reading); 2014 Nov; 160(Pt 11):2538-2550. PubMed ID: 25139948 [TBL] [Abstract][Full Text] [Related]
2. Biochemical analysis of three putative KaiC clock proteins from Synechocystis sp. PCC 6803 suggests their functional divergence. Wiegard A; Dörrich AK; Deinzer HT; Beck C; Wilde A; Holtzendorff J; Axmann IM Microbiology (Reading); 2013 May; 159(Pt 5):948-958. PubMed ID: 23449916 [TBL] [Abstract][Full Text] [Related]
3. The Cyanobacterial Ribosomal-Associated Protein LrtA Is Involved in Post-Stress Survival in Synechocystis sp. PCC 6803. Galmozzi CV; Florencio FJ; Muro-Pastor MI PLoS One; 2016; 11(7):e0159346. PubMed ID: 27442126 [TBL] [Abstract][Full Text] [Related]
4. Essential role of the plasmid hik31 operon in regulating central metabolism in the dark in Synechocystis sp. PCC 6803. Nagarajan S; Srivastava S; Sherman LA Mol Microbiol; 2014 Jan; 91(1):79-97. PubMed ID: 24237382 [TBL] [Abstract][Full Text] [Related]
5. The role of the Synechocystis sp. PCC 6803 homolog of the circadian clock output regulator RpaA in day-night transitions. Köbler C; Schultz SJ; Kopp D; Voigt K; Wilde A Mol Microbiol; 2018 Dec; 110(5):847-861. PubMed ID: 30216574 [TBL] [Abstract][Full Text] [Related]
6. Functions of the duplicated hik31 operons in central metabolism and responses to light, dark, and carbon sources in Synechocystis sp. strain PCC 6803. Nagarajan S; Sherman DM; Shaw I; Sherman LA J Bacteriol; 2012 Jan; 194(2):448-59. PubMed ID: 22081400 [TBL] [Abstract][Full Text] [Related]
7. Gene expression under low-oxygen conditions in the cyanobacterium Synechocystis sp. PCC 6803 demonstrates Hik31-dependent and -independent responses. Summerfield TC; Nagarajan S; Sherman LA Microbiology (Reading); 2011 Feb; 157(Pt 2):301-312. PubMed ID: 20929957 [TBL] [Abstract][Full Text] [Related]
8. CpcM posttranslationally methylates asparagine-71/72 of phycobiliprotein beta subunits in Synechococcus sp. strain PCC 7002 and Synechocystis sp. strain PCC 6803. Shen G; Leonard HS; Schluchter WM; Bryant DA J Bacteriol; 2008 Jul; 190(14):4808-17. PubMed ID: 18469097 [TBL] [Abstract][Full Text] [Related]
9. Sugar catabolism regulated by light- and nitrogen-status in the cyanobacterium Synechocystis sp. PCC 6803. Osanai T; Azuma M; Tanaka K Photochem Photobiol Sci; 2007 May; 6(5):508-14. PubMed ID: 17487300 [TBL] [Abstract][Full Text] [Related]
10. Group 2 sigma factor mutant ΔsigCDE of the cyanobacterium Synechocystis sp. PCC 6803 reveals functionality of both carotenoids and flavodiiron proteins in photoprotection of photosystem II. Hakkila K; Antal T; Gunnelius L; Kurkela J; Matthijs HC; Tyystjärvi E; Tyystjärvi T Plant Cell Physiol; 2013 Nov; 54(11):1780-90. PubMed ID: 24009334 [TBL] [Abstract][Full Text] [Related]
12. Transcript profiling indicates that the absence of PsbO affects the coordination of C and N metabolism in Synechocystis sp. PCC 6803. Schriek S; Aguirre-von-Wobeser E; Nodop A; Becker A; Ibelings BW; Bok J; Staiger D; Matthijs HC; Pistorius EK; Michel KP Physiol Plant; 2008 Jul; 133(3):525-43. PubMed ID: 18419737 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome analysis of the cyanobacterium Synechocystis sp. PCC 6803 and mechanisms of photoinhibition tolerance under extreme high light conditions. Ogawa K; Yoshikawa K; Matsuda F; Toya Y; Shimizu H J Biosci Bioeng; 2018 Nov; 126(5):596-602. PubMed ID: 29907527 [TBL] [Abstract][Full Text] [Related]
14. Inactivation of genes encoding plastoglobuli-like proteins in Synechocystis sp. PCC 6803 leads to a light-sensitive phenotype. Cunningham FX; Tice AB; Pham C; Gantt E J Bacteriol; 2010 Mar; 192(6):1700-9. PubMed ID: 20081034 [TBL] [Abstract][Full Text] [Related]
15. Bioinformatic analysis of the genomes of the cyanobacteria Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 for the presence of peroxiredoxins and their transcript regulation under stress. Stork T; Michel KP; Pistorius EK; Dietz KJ J Exp Bot; 2005 Dec; 56(422):3193-206. PubMed ID: 16284092 [TBL] [Abstract][Full Text] [Related]
16. Pleiotropic effect of a histidine kinase on carbohydrate metabolism in Synechocystis sp. strain PCC 6803 and its requirement for heterotrophic growth. Singh AK; Sherman LA J Bacteriol; 2005 Apr; 187(7):2368-76. PubMed ID: 15774880 [TBL] [Abstract][Full Text] [Related]
17. Inactivation of the petE gene encoding plastocyanin causes different photosynthetic responses in cyanobacterium Synechocystis PCC 6803 under light-dark photoperiod and continuous light conditions. Wang XQ; Jiang HB; Zhang R; Qiu BS FEMS Microbiol Lett; 2013 Apr; 341(2):106-14. PubMed ID: 23397890 [TBL] [Abstract][Full Text] [Related]
18. A putative sensor kinase, Hik31, is involved in the response of Synechocystis sp. strain PCC 6803 to the presence of glucose. Kahlon S; Beeri K; Ohkawa H; Hihara Y; Murik O; Suzuki I; Ogawa T; Kaplan A Microbiology (Reading); 2006 Mar; 152(Pt 3):647-655. PubMed ID: 16514145 [TBL] [Abstract][Full Text] [Related]
19. Role of sigma factors in controlling global gene expression in light/dark transitions in the cyanobacterium Synechocystis sp. strain PCC 6803. Summerfield TC; Sherman LA J Bacteriol; 2007 Nov; 189(21):7829-40. PubMed ID: 17720783 [TBL] [Abstract][Full Text] [Related]
20. Homologs of Circadian Clock Proteins Impact the Metabolic Switch Between Light and Dark Growth in the Cyanobacterium Scheurer NM; Rajarathinam Y; Timm S; Köbler C; Kopka J; Hagemann M; Wilde A Front Plant Sci; 2021; 12():675227. PubMed ID: 34239525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]