These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25140318)

  • 21. Accelerating large-scale protein structure alignments with graphics processing units.
    Pang B; Zhao N; Becchi M; Korkin D; Shyu CR
    BMC Res Notes; 2012 Feb; 5():116. PubMed ID: 22357132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple Sequence Alignment Based on a Suffix Tree and Center-Star Strategy: A Linear Method for Multiple Nucleotide Sequence Alignment on Spark Parallel Framework.
    Su W; Liao X; Lu Y; Zou Q; Peng S
    J Comput Biol; 2017 Dec; 24(12):1230-1242. PubMed ID: 29116822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A fast parallel algorithm for finding the longest common sequence of multiple biosequences.
    Chen Y; Wan A; Liu W
    BMC Bioinformatics; 2006 Dec; 7 Suppl 4(Suppl 4):S4. PubMed ID: 17217522
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heuristic Pairwise Alignment in Database Environments.
    Lipták P; Kiss A; Szalai-Gindl JM
    Genes (Basel); 2022 Nov; 13(11):. PubMed ID: 36360242
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CHTKC: a robust and efficient k-mer counting algorithm based on a lock-free chaining hash table.
    Wang J; Chen S; Dong L; Wang G
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32438416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fuse: multiple network alignment via data fusion.
    Gligorijević V; Malod-Dognin N; Pržulj N
    Bioinformatics; 2016 Apr; 32(8):1195-203. PubMed ID: 26668003
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Parallel workflow manager for non-parallel bioinformatic applications to solve large-scale biological problems on a supercomputer.
    Suplatov D; Popova N; Zhumatiy S; Voevodin V; Švedas V
    J Bioinform Comput Biol; 2016 Apr; 14(2):1641008. PubMed ID: 27122320
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CUDA ClustalW: An efficient parallel algorithm for progressive multiple sequence alignment on Multi-GPUs.
    Hung CL; Lin YS; Lin CY; Chung YC; Chung YF
    Comput Biol Chem; 2015 Oct; 58():62-8. PubMed ID: 26052076
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Parallel algorithm research on several important open problems in bioinformatics.
    Niu BF; Lang XY; Lu ZH; Chi XB
    Interdiscip Sci; 2009 Sep; 1(3):187-95. PubMed ID: 20640837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Review of Parallel Implementations for the Smith-Waterman Algorithm.
    Xia Z; Cui Y; Zhang A; Tang T; Peng L; Huang C; Yang C; Liao X
    Interdiscip Sci; 2022 Mar; 14(1):1-14. PubMed ID: 34487327
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm.
    Rani RR; Ramyachitra D
    Biosystems; 2016 Dec; 150():177-189. PubMed ID: 27784624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NCBI Genome Workbench: Desktop Software for Comparative Genomics, Visualization, and GenBank Data Submission.
    Kuznetsov A; Bollin CJ
    Methods Mol Biol; 2021; 2231():261-295. PubMed ID: 33289898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Randomized and parallel algorithms for distance matrix calculations in multiple sequence alignment.
    Rajasekaran S; Thapar V; Dave H; Huang CH
    J Clin Monit Comput; 2005 Oct; 19(4-5):351-9. PubMed ID: 16328949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GenSeq+: A Scalable High-Performance Accelerator for Genome Sequencing.
    Wang C; Gong L; Lei S; Fang H; Li X; Wang A; Zhou X
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1512-1523. PubMed ID: 31613776
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Local homology recognition and distance measures in linear time using compressed amino acid alphabets.
    Edgar RC
    Nucleic Acids Res; 2004; 32(1):380-5. PubMed ID: 14729922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Counting Kmers for Biological Sequences at Large Scale.
    Ge J; Meng J; Guo N; Wei Y; Balaji P; Feng S
    Interdiscip Sci; 2020 Mar; 12(1):99-108. PubMed ID: 31734873
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A greedy, graph-based algorithm for the alignment of multiple homologous gene lists.
    Fostier J; Proost S; Dhoedt B; Saeys Y; Demeester P; Van de Peer Y; Vandepoele K
    Bioinformatics; 2011 Mar; 27(6):749-56. PubMed ID: 21216775
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs.
    Kundeti VK; Rajasekaran S; Dinh H; Vaughn M; Thapar V
    BMC Bioinformatics; 2010 Nov; 11():560. PubMed ID: 21078174
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Modified Multiple Alignment Fast Fourier Transform with Higher Efficiency.
    Zheng W; Li K; Li K; So HC
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(3):634-645. PubMed ID: 26890922
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genomic multiple sequence alignments: refinement using a genetic algorithm.
    Wang C; Lefkowitz EJ
    BMC Bioinformatics; 2005 Aug; 6():200. PubMed ID: 16086841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.