These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 25140431)

  • 1. Characterization of protein flexibility using small-angle x-ray scattering and amplified collective motion simulations.
    Wen B; Peng J; Zuo X; Gong Q; Zhang Z
    Biophys J; 2014 Aug; 107(4):956-64. PubMed ID: 25140431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and flexibility within proteins as identified through small angle X-ray scattering.
    Pelikan M; Hura GL; Hammel M
    Gen Physiol Biophys; 2009 Jun; 28(2):174-89. PubMed ID: 19592714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SAXS-Oriented Ensemble Refinement of Flexible Biomolecules.
    Cheng P; Peng J; Zhang Z
    Biophys J; 2017 Apr; 112(7):1295-1301. PubMed ID: 28402873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of peptides and proteins with amplified collective motions.
    Zhang Z; Shi Y; Liu H
    Biophys J; 2003 Jun; 84(6):3583-93. PubMed ID: 12770868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid Methods for Modeling Protein Structures Using Molecular Dynamics Simulations and Small-Angle X-Ray Scattering Data.
    Ekimoto T; Ikeguchi M
    Adv Exp Med Biol; 2018; 1105():237-258. PubMed ID: 30617833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles.
    Chan-Yao-Chong M; Durand D; Ha-Duong T
    J Chem Inf Model; 2019 May; 59(5):1743-1758. PubMed ID: 30840442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins.
    Kikhney AG; Svergun DI
    FEBS Lett; 2015 Sep; 589(19 Pt A):2570-7. PubMed ID: 26320411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Domain motions in bacteriophage T4 lysozyme: a comparison between molecular dynamics and crystallographic data.
    de Groot BL; Hayward S; van Aalten DM; Amadei A; Berendsen HJ
    Proteins; 1998 May; 31(2):116-27. PubMed ID: 9593186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining structural ensembles of flexible multi-domain proteins using small-angle X-ray scattering and molecular dynamics simulations.
    Zhang Y; Wen B; Peng J; Zuo X; Gong Q; Zhang Z
    Protein Cell; 2015 Aug; 6(8):619-23. PubMed ID: 25944044
    [No Abstract]   [Full Text] [Related]  

  • 10. Effects of ionic strength on SAXS data for proteins revealed by molecular dynamics simulations.
    Oroguchi T; Ikeguchi M
    J Chem Phys; 2011 Jan; 134(2):025102. PubMed ID: 21241150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient characterization of collective motions and interresidue correlations in proteins by low-resolution simulations.
    Bahar I; Erman B; Haliloglu T; Jernigan RL
    Biochemistry; 1997 Nov; 36(44):13512-23. PubMed ID: 9354619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Functional Dynamics of Modular Multidomain Proteins by SAXS and NMR.
    Thompson MK; Ehlinger AC; Chazin WJ
    Methods Enzymol; 2017; 592():49-76. PubMed ID: 28668130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of macromolecular flexibility in solution by small-angle X-ray scattering (SAXS).
    Hammel M
    Eur Biophys J; 2012 Oct; 41(10):789-99. PubMed ID: 22639100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate flexible fitting of high-resolution protein structures to small-angle x-ray scattering data using a coarse-grained model with implicit hydration shell.
    Zheng W; Tekpinar M
    Biophys J; 2011 Dec; 101(12):2981-91. PubMed ID: 22208197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational dynamics of a multidomain protein by neutron scattering and computational analysis.
    Nakagawa H; Saio T; Nagao M; Inoue R; Sugiyama M; Ajito S; Tominaga T; Kawakita Y
    Biophys J; 2021 Aug; 120(16):3341-3354. PubMed ID: 34242590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of small-angle X-ray scattering data into structural modeling of proteins and their assemblies.
    Förster F; Webb B; Krukenberg KA; Tsuruta H; Agard DA; Sali A
    J Mol Biol; 2008 Oct; 382(4):1089-106. PubMed ID: 18694757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid interpretation of small-angle X-ray scattering data.
    Weiel M; Reinartz I; Schug A
    PLoS Comput Biol; 2019 Mar; 15(3):e1006900. PubMed ID: 30901335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of biostructural changes, dynamics, and interactions - Small-angle X-ray scattering to the rescue.
    Vestergaard B
    Arch Biochem Biophys; 2016 Jul; 602():69-79. PubMed ID: 26945933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Sampling of Protein Conformational Transitions via Dynamically Optimized Collective Variables.
    Brotzakis ZF; Parrinello M
    J Chem Theory Comput; 2019 Feb; 15(2):1393-1398. PubMed ID: 30557019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering.
    Bernadó P; Svergun DI
    Mol Biosyst; 2012 Jan; 8(1):151-67. PubMed ID: 21947276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.