These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 25141219)
1. Importance of excitation and trapping conditions in photosynthetic environment-assisted energy transport. León-Montiel Rde J; Kassal I; Torres JP J Phys Chem B; 2014 Sep; 118(36):10588-94. PubMed ID: 25141219 [TBL] [Abstract][Full Text] [Related]
2. Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria. Huh J; Saikin SK; Brookes JC; Valleau S; Fujita T; Aspuru-Guzik A J Am Chem Soc; 2014 Feb; 136(5):2048-57. PubMed ID: 24405318 [TBL] [Abstract][Full Text] [Related]
3. Coherent transport and energy flow patterns in photosynthesis under incoherent excitation. Pelzer KM; Can T; Gray SK; Morr DK; Engel GS J Phys Chem B; 2014 Mar; 118(10):2693-702. PubMed ID: 24498866 [TBL] [Abstract][Full Text] [Related]
4. Iterative linearized density matrix propagation for modeling coherent excitation energy transfer in photosynthetic light harvesting. Huo P; Coker DF J Chem Phys; 2010 Nov; 133(18):184108. PubMed ID: 21073214 [TBL] [Abstract][Full Text] [Related]
5. Numerical evidence for robustness of environment-assisted quantum transport. Shabani A; Mohseni M; Rabitz H; Lloyd S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042706. PubMed ID: 24827277 [TBL] [Abstract][Full Text] [Related]
6. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems. Huo P; Coker DF J Chem Phys; 2012 Mar; 136(11):115102. PubMed ID: 22443796 [TBL] [Abstract][Full Text] [Related]
7. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Engel GS; Calhoun TR; Read EL; Ahn TK; Mancal T; Cheng YC; Blankenship RE; Fleming GR Nature; 2007 Apr; 446(7137):782-6. PubMed ID: 17429397 [TBL] [Abstract][Full Text] [Related]
8. Evidence for a cysteine-mediated mechanism of excitation energy regulation in a photosynthetic antenna complex. Orf GS; Saer RG; Niedzwiedzki DM; Zhang H; McIntosh CL; Schultz JW; Mirica LM; Blankenship RE Proc Natl Acad Sci U S A; 2016 Aug; 113(31):E4486-93. PubMed ID: 27335466 [TBL] [Abstract][Full Text] [Related]
9. Efficiency of excitation energy trapping in the green photosynthetic bacterium Chlorobaculum tepidum. Ranjbar Choubeh R; Koehorst RBM; Bína D; Struik PC; Pšenčík J; van Amerongen H Biochim Biophys Acta Bioenerg; 2019 Feb; 1860(2):147-154. PubMed ID: 30537470 [TBL] [Abstract][Full Text] [Related]
10. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Ishizaki A; Calhoun TR; Schlau-Cohen GS; Fleming GR Phys Chem Chem Phys; 2010 Jul; 12(27):7319-37. PubMed ID: 20544102 [TBL] [Abstract][Full Text] [Related]
11. Highly efficient noise-assisted energy transport in classical oscillator systems. León-Montiel Rde J; Torres JP Phys Rev Lett; 2013 May; 110(21):218101. PubMed ID: 23745938 [TBL] [Abstract][Full Text] [Related]
12. In situ mapping of the energy flow through the entire photosynthetic apparatus. Dostál J; Pšenčík J; Zigmantas D Nat Chem; 2016 Jul; 8(7):705-10. PubMed ID: 27325098 [TBL] [Abstract][Full Text] [Related]
13. Long range excitonic transport in a biomimetic system inspired by the bacterial light-harvesting apparatus. Harel E J Chem Phys; 2012 May; 136(17):174104. PubMed ID: 22583207 [TBL] [Abstract][Full Text] [Related]
14. Excited states and trapping in reaction center complexes of the green sulfur bacterium Prosthecochloris aestuarii. Neerken S; Permentier HP; Francke C; Aartsma TJ; Amesz J Biochemistry; 1998 Jul; 37(30):10792-7. PubMed ID: 9692969 [TBL] [Abstract][Full Text] [Related]
15. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Hildner R; Brinks D; Nieder JB; Cogdell RJ; van Hulst NF Science; 2013 Jun; 340(6139):1448-51. PubMed ID: 23788794 [TBL] [Abstract][Full Text] [Related]
16. FMOxFMO: Elucidating Excitonic Interactions in the Fenna-Matthews-Olson Complex with the Fragment Molecular Orbital Method. Kaliakin DS; Nakata H; Kim Y; Chen Q; Fedorov DG; Slipchenko LV J Chem Theory Comput; 2020 Feb; 16(2):1175-1187. PubMed ID: 31841349 [TBL] [Abstract][Full Text] [Related]
17. Site-Dependent Fluctuations Optimize Electronic Energy Transfer in the Fenna-Matthews-Olson Protein. Saito S; Higashi M; Fleming GR J Phys Chem B; 2019 Nov; 123(46):9762-9772. PubMed ID: 31657928 [TBL] [Abstract][Full Text] [Related]
18. Spatial propagation of excitonic coherence enables ratcheted energy transfer. Hoyer S; Ishizaki A; Whaley KB Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041911. PubMed ID: 23214619 [TBL] [Abstract][Full Text] [Related]
19. Proposal for probing energy transfer pathway by single-molecule pump-dump experiment. Tao MJ; Ai Q; Deng FG; Cheng YC Sci Rep; 2016 Jun; 6():27535. PubMed ID: 27277702 [TBL] [Abstract][Full Text] [Related]
20. Microscopic quantum coherence in a photosynthetic-light-harvesting antenna. Dawlaty JM; Ishizaki A; De AK; Fleming GR Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3672-91. PubMed ID: 22753820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]