These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 25141234)
21. The wetting characteristics of aluminum droplets on rough surfaces with molecular dynamics simulations. Guan C; Lv X; Han Z; Chen C Phys Chem Chem Phys; 2020 Jan; 22(4):2361-2371. PubMed ID: 31934698 [TBL] [Abstract][Full Text] [Related]
22. Modeling the Effects of Nanopatterned Surfaces on Wetting States of Droplets. Xiao K; Zhao Y; Ouyang G; Li X Nanoscale Res Lett; 2017 Dec; 12(1):309. PubMed ID: 28449550 [TBL] [Abstract][Full Text] [Related]
23. Resonance Cassie-Wenzel wetting transition for horizontally vibrated drops deposited on a rough surface. Bormashenko E; Pogreb R; Whyman G; Erlich M Langmuir; 2007 Nov; 23(24):12217-21. PubMed ID: 17956134 [TBL] [Abstract][Full Text] [Related]
24. Evaporation-Induced Wetting Transition of Nanodroplets on Nanopatterned Surfaces with Concentric Rings: Surface Geometry and Wettability Effects. Gao S; Long J; Liu W; Liu Z Langmuir; 2019 Jul; 35(29):9546-9553. PubMed ID: 31298861 [TBL] [Abstract][Full Text] [Related]
25. Wetting transition from the Cassie-Baxter state to the Wenzel state on textured polymer surfaces. Murakami D; Jinnai H; Takahara A Langmuir; 2014 Mar; 30(8):2061-7. PubMed ID: 24494786 [TBL] [Abstract][Full Text] [Related]
26. The mechanism and universal scaling law of the contact line friction for the Cassie-state droplets on nanostructured ultrahydrophobic surfaces. Zhao L; Cheng J Nanoscale; 2018 Apr; 10(14):6426-6436. PubMed ID: 29564459 [TBL] [Abstract][Full Text] [Related]
27. Water and Ethanol Droplet Wetting Transition during Evaporation on Omniphobic Surfaces. Chen X; Weibel JA; Garimella SV Sci Rep; 2015 Nov; 5():17110. PubMed ID: 26603940 [TBL] [Abstract][Full Text] [Related]
28. A stable intermediate wetting state after a water drop contacts the bottom of a microchannel or is placed on a single corner. Luo C; Xiang M; Heng X Langmuir; 2012 Jun; 28(25):9554-61. PubMed ID: 22639865 [TBL] [Abstract][Full Text] [Related]
29. Droplets on superhydrophobic surfaces: visualization of the contact area by cryo-scanning electron microscopy. Ensikat HJ; Schulte AJ; Koch K; Barthlott W Langmuir; 2009 Nov; 25(22):13077-83. PubMed ID: 19899819 [TBL] [Abstract][Full Text] [Related]
31. Wetting Transition of Condensed Droplets on Nanostructured Superhydrophobic Surfaces: Coordination of Surface Properties and Condensing Conditions. Wen R; Lan Z; Peng B; Xu W; Yang R; Ma X ACS Appl Mater Interfaces; 2017 Apr; 9(15):13770-13777. PubMed ID: 28362085 [TBL] [Abstract][Full Text] [Related]
32. Influence of geometric patterns of microstructured superhydrophobic surfaces on water-harvesting performance via dewing. Seo D; Lee C; Nam Y Langmuir; 2014 Dec; 30(51):15468-76. PubMed ID: 25466626 [TBL] [Abstract][Full Text] [Related]
33. Modeling of wetting: a study of nanowetting at rough and heterogeneous surfaces. Lundgren M; Allan NL; Cosgrove T Langmuir; 2007 Jan; 23(3):1187-94. PubMed ID: 17241031 [TBL] [Abstract][Full Text] [Related]
34. Wetting phenomena on micro-grooved aluminum surfaces and modeling of the critical droplet size. Sommers AD; Jacobi AM J Colloid Interface Sci; 2008 Dec; 328(2):402-11. PubMed ID: 18930243 [TBL] [Abstract][Full Text] [Related]
35. Effects of Solid Fraction on Droplet Wetting and Vapor Condensation: A Molecular Dynamic Simulation Study. Gao S; Liao Q; Liu W; Liu Z Langmuir; 2017 Oct; 33(43):12379-12388. PubMed ID: 28980811 [TBL] [Abstract][Full Text] [Related]
36. Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure. Ran C; Ding G; Liu W; Deng Y; Hou W Langmuir; 2008 Sep; 24(18):9952-5. PubMed ID: 18702472 [TBL] [Abstract][Full Text] [Related]
37. Stimuli-responsive topological change of microstructured surfaces and the resultant variations of wetting properties. Wu ZL; Wei R; Buguin A; Taulemesse JM; Le Moigne N; Bergeret A; Wang X; Keller P ACS Appl Mater Interfaces; 2013 Aug; 5(15):7485-91. PubMed ID: 23848054 [TBL] [Abstract][Full Text] [Related]
38. Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions. Nosonovsky M; Bhushan B Langmuir; 2008 Feb; 24(4):1525-33. PubMed ID: 18072794 [TBL] [Abstract][Full Text] [Related]
39. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. Miljkovic N; Enright R; Wang EN ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016 [TBL] [Abstract][Full Text] [Related]
40. Numerical study of the effects of surface topography and chemistry on the wetting transition using the string method. Zhang Y; Ren W J Chem Phys; 2014 Dec; 141(24):244705. PubMed ID: 25554173 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]