These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25141235)

  • 1. Linear population allocation by bistable switches in response to transient stimulation.
    Srimani JK; Yao G; Neu J; Tanouchi Y; Lee TJ; You L
    PLoS One; 2014; 9(8):e105408. PubMed ID: 25141235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equation-free analysis of two-component system signalling model reveals the emergence of co-existing phenotypes in the absence of multistationarity.
    Hoyle RB; Avitabile D; Kierzek AM
    PLoS Comput Biol; 2012; 8(6):e1002396. PubMed ID: 22761552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulsatile signaling of bistable switches reveal the distinct nature of pulse processing by mutual activation and mutual inhibition loop.
    Das S; Barik D
    J Theor Biol; 2022 May; 540():111075. PubMed ID: 35231494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for inverse bifurcation of biochemical switches: inferring parameters from dose response curves.
    Otero-Muras I; Yordanov P; Stelling J
    BMC Syst Biol; 2014 Nov; 8():114. PubMed ID: 25409687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady state statistical correlations predict bistability in reaction motifs.
    Chakravarty S; Barik D
    Mol Biosyst; 2017 Mar; 13(4):775-784. PubMed ID: 28246663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switching between phenotypes and population extinction.
    Lohmar I; Meerson B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051901. PubMed ID: 22181438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multistable decision switches for flexible control of epigenetic differentiation.
    Guantes R; Poyatos JF
    PLoS Comput Biol; 2008 Nov; 4(11):e1000235. PubMed ID: 19043543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bistable responses in bacterial genetic networks: designs and dynamical consequences.
    Tiwari A; Ray JC; Narula J; Igoshin OA
    Math Biosci; 2011 May; 231(1):76-89. PubMed ID: 21385588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linking fast and slow positive feedback loops creates an optimal bistable switch in cell signaling.
    Zhang XP; Cheng Z; Liu F; Wang W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031924. PubMed ID: 17930288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global analysis of dynamical decision-making models through local computation around the hidden saddle.
    Trotta L; Bullinger E; Sepulchre R
    PLoS One; 2012; 7(3):e33110. PubMed ID: 22438893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-transcriptional regulatory processes shape transcriptional network dynamics.
    Ray JC; Tabor JJ; Igoshin OA
    Nat Rev Microbiol; 2011 Oct; 9(11):817-28. PubMed ID: 21986901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of dynamic stimulation pattern in the analysis of bistable intracellular networks.
    Millat T; Sreenath SN; Soebiyanto RP; Avva J; Cho KH; Wolkenhauer O
    Biosystems; 2008 Jun; 92(3):270-81. PubMed ID: 18474306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A genetic bistable switch utilizing nonlinear protein degradation.
    Huang D; Holtz WJ; Maharbiz MM
    J Biol Eng; 2012 Jul; 6(1):9. PubMed ID: 22776405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modular systems approach to understanding the interaction of adaptive and monostable and bistable threshold processes.
    Seaton D; Krishnan J
    IET Syst Biol; 2011 Mar; 5(2):81-94. PubMed ID: 21405196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using sensitivity analyses to understand bistable system behavior.
    Sreedharan V; Bhalla US; Ramakrishnan N
    BMC Bioinformatics; 2023 Apr; 24(1):136. PubMed ID: 37024783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of biological switches using the method of Gröebner bases.
    Arkun Y
    BMC Bioinformatics; 2019 Nov; 20(1):615. PubMed ID: 31779580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional regulatory networks in bacteria: from input signals to output responses.
    Seshasayee AS; Bertone P; Fraser GM; Luscombe NM
    Curr Opin Microbiol; 2006 Oct; 9(5):511-9. PubMed ID: 16942903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sampling rare switching events in biochemical networks.
    Allen RJ; Warren PB; Ten Wolde PR
    Phys Rev Lett; 2005 Jan; 94(1):018104. PubMed ID: 15698138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a bistable switch to control cellular uptake.
    OyarzĂșn DA; Chaves M
    J R Soc Interface; 2015 Dec; 12(113):20150618. PubMed ID: 26674196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exclusion rules, bottlenecks and the evolution of stochastic phenotype switching.
    Libby E; Rainey PB
    Proc Biol Sci; 2011 Dec; 278(1724):3574-83. PubMed ID: 21490013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.