These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 25141343)

  • 1. Rainbow trout provide the first experimental evidence for adherence to a distinct Strouhal number during animal oscillatory propulsion.
    Nudds RL; John EL; Keen AN; Shiels HA
    J Exp Biol; 2014 Jul; 217(Pt 13):2244-9. PubMed ID: 25141343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematics and energetics of swimming performance during acute warming in brown trout Salmo trutta.
    Lea JM; Keen AN; Nudds RL; Shiels HA
    J Fish Biol; 2016 Jan; 88(1):403-17. PubMed ID: 26563644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism, swimming performance, and tissue biochemistry of high desert redband trout (Oncorhynchus mykiss ssp.): evidence for phenotypic differences in physiological function.
    Gamperl AK; Rodnick KJ; Faust HA; Venn EC; Bennett MT; Crawshaw LI; Keeley ER; Powell MS; Li HW
    Physiol Biochem Zool; 2002; 75(5):413-31. PubMed ID: 12529843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency.
    Taylor GK; Nudds RL; Thomas AL
    Nature; 2003 Oct; 425(6959):707-11. PubMed ID: 14562101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extreme temperature combined with hypoxia, affects swimming performance in brown trout (
    Nudds RL; Ozolina K; Fenkes M; Wearing OH; Shiels HA
    Conserv Physiol; 2020; 8(1):coz108. PubMed ID: 31988750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locomotor function of the dorsal fin in rainbow trout: kinematic patterns and hydrodynamic forces.
    Drucker EG; Lauder GV
    J Exp Biol; 2005 Dec; 208(Pt 23):4479-94. PubMed ID: 16339868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The recovery of locomotory activity following exhaustive exercise in juvenile rainbow trout (Oncorhynchus mykiss).
    Lee-Jenkins SS; Binder TR; Karch AP; McDonald DG
    Physiol Biochem Zool; 2007; 80(1):88-98. PubMed ID: 17160882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street.
    Liao JC; Beal DN; Lauder GV; Triantafyllou MS
    J Exp Biol; 2003 Mar; 206(Pt 6):1059-73. PubMed ID: 12582148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of flow speed and body size on Kármán gait kinematics in rainbow trout.
    Akanyeti O; Liao JC
    J Exp Biol; 2013 Sep; 216(Pt 18):3442-9. PubMed ID: 23737556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rainbow trout Oncorhynchus mykiss consume less energy when swimming near obstructions.
    Cook CL; Coughlin DJ
    J Fish Biol; 2010 Nov; 77(7):1716-23. PubMed ID: 21078030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2008 May; 211(Pt 10):1541-58. PubMed ID: 18456881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How are Strouhal number, drag, and efficiency adjusted in high level underwater monofin-swimming?
    Nicolas G; Bideau B; Colobert B; Berton E
    Hum Mov Sci; 2007 Jun; 26(3):426-42. PubMed ID: 17509711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2009 Feb; 212(Pt 4):576-92. PubMed ID: 19181905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exhaustive exercise does not affect the preferred temperature for recovery in juvenile rainbow trout (Oncorhynchus mykiss).
    Clutterham S; Gamperl AK; Wallace HL; Crawshaw LI; Farrell AP
    Physiol Biochem Zool; 2004; 77(4):611-8. PubMed ID: 15449232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An acute increase in water temperature can decrease the swimming performance and energy utilization efficiency in rainbow trout (Oncorhynchus mykiss).
    Yin L; Chen L; Wang M; Li H; Yu X
    Fish Physiol Biochem; 2021 Feb; 47(1):109-120. PubMed ID: 33211244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field swimming behavior in largemouth bass deviates from predictions based on economy and propulsive efficiency.
    Han AX; Berlin C; Ellerby DJ
    J Exp Biol; 2017 Sep; 220(Pt 18):3204-3208. PubMed ID: 28931716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuromuscular control of trout swimming in a vortex street: implications for energy economy during the Karman gait.
    Liao JC
    J Exp Biol; 2004 Sep; 207(Pt 20):3495-506. PubMed ID: 15339945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thyroxine induces transitions in red muscle kinetics and steady swimming kinematics in rainbow trout (Oncorhynchus mykiss).
    Coughlin DJ; Forry JA; McGlinchey SM; Mitchell J; Saporetti KA; Stauffer KA
    J Exp Zool; 2001 Jul; 290(2):115-24. PubMed ID: 11471141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variability in swimming performance and underlying physiology in rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta).
    Ralph AL; Berli BI; Burkhardt-Holm P; Tierney KB
    Comp Biochem Physiol A Mol Integr Physiol; 2012 Nov; 163(3-4):350-6. PubMed ID: 22841603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of temperature and ammonia exposure on swimming performance of brook charr (Salvelinus fontinalis).
    Tudorache C; O'Keefe RA; Benfey TJ
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Aug; 156(4):523-8. PubMed ID: 20433938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.