These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 25141376)
1. The making of the master clock. Buhr E; Van Gelder RN Elife; 2014 Aug; 3():e04014. PubMed ID: 25141376 [TBL] [Abstract][Full Text] [Related]
2. Lhx1 maintains synchrony among circadian oscillator neurons of the SCN. Hatori M; Gill S; Mure LS; Goulding M; O'Leary DD; Panda S Elife; 2014 Jul; 3():e03357. PubMed ID: 25035422 [TBL] [Abstract][Full Text] [Related]
3. Visualizing jet lag in the mouse suprachiasmatic nucleus and peripheral circadian timing system. Davidson AJ; Castanon-Cervantes O; Leise TL; Molyneux PC; Harrington ME Eur J Neurosci; 2009 Jan; 29(1):171-80. PubMed ID: 19032592 [TBL] [Abstract][Full Text] [Related]
4. An LHX1-Regulated Transcriptional Network Controls Sleep/Wake Coupling and Thermal Resistance of the Central Circadian Clockworks. Bedont JL; LeGates TA; Buhr E; Bathini A; Ling JP; Bell B; Wu MN; Wong PC; Van Gelder RN; Mongrain V; Hattar S; Blackshaw S Curr Biol; 2017 Jan; 27(1):128-136. PubMed ID: 28017605 [TBL] [Abstract][Full Text] [Related]
5. Arginine vasopressin signaling in the suprachiasmatic nucleus on the resilience of circadian clock to jet lag. Yamaguchi Y Neurosci Res; 2018 Apr; 129():57-61. PubMed ID: 29061320 [TBL] [Abstract][Full Text] [Related]
6. Differential roles of AVP and VIP signaling in the postnatal changes of neural networks for coherent circadian rhythms in the SCN. Ono D; Honma S; Honma K Sci Adv; 2016 Sep; 2(9):e1600960. PubMed ID: 27626074 [TBL] [Abstract][Full Text] [Related]
7. Lhx1 controls terminal differentiation and circadian function of the suprachiasmatic nucleus. Bedont JL; LeGates TA; Slat EA; Byerly MS; Wang H; Hu J; Rupp AC; Qian J; Wong GW; Herzog ED; Hattar S; Blackshaw S Cell Rep; 2014 May; 7(3):609-22. PubMed ID: 24767996 [TBL] [Abstract][Full Text] [Related]
8. Variations in Phase and Amplitude of Rhythmic Clock Gene Expression across Prefrontal Cortex, Hippocampus, Amygdala, and Hypothalamic Paraventricular and Suprachiasmatic Nuclei of Male and Female Rats. Chun LE; Woodruff ER; Morton S; Hinds LR; Spencer RL J Biol Rhythms; 2015 Oct; 30(5):417-36. PubMed ID: 26271538 [TBL] [Abstract][Full Text] [Related]
9. PML regulates PER2 nuclear localization and circadian function. Miki T; Xu Z; Chen-Goodspeed M; Liu M; Van Oort-Jansen A; Rea MA; Zhao Z; Lee CC; Chang KS EMBO J; 2012 Mar; 31(6):1427-39. PubMed ID: 22274616 [TBL] [Abstract][Full Text] [Related]
10. Visualizing and Quantifying Intracellular Behavior and Abundance of the Core Circadian Clock Protein PERIOD2. Smyllie NJ; Pilorz V; Boyd J; Meng QJ; Saer B; Chesham JE; Maywood ES; Krogager TP; Spiller DG; Boot-Handford R; White MR; Hastings MH; Loudon AS Curr Biol; 2016 Jul; 26(14):1880-6. PubMed ID: 27374340 [TBL] [Abstract][Full Text] [Related]
11. Collection of Mouse Brain Slices for Bioluminescence Imaging of Circadian Clock Networks. Evans JA; Welsh DK; Davidson AJ Methods Mol Biol; 2021; 2130():287-294. PubMed ID: 33284452 [TBL] [Abstract][Full Text] [Related]
12. Chronic ethanol consumption disrupts the core molecular clock and diurnal rhythms of metabolic genes in the liver without affecting the suprachiasmatic nucleus. Filiano AN; Millender-Swain T; Johnson R; Young ME; Gamble KL; Bailey SM PLoS One; 2013; 8(8):e71684. PubMed ID: 23951220 [TBL] [Abstract][Full Text] [Related]
13. SOX2-Dependent Transcription in Clock Neurons Promotes the Robustness of the Central Circadian Pacemaker. Cheng AH; Bouchard-Cannon P; Hegazi S; Lowden C; Fung SW; Chiang CK; Ness RW; Cheng HM Cell Rep; 2019 Mar; 26(12):3191-3202.e8. PubMed ID: 30893593 [TBL] [Abstract][Full Text] [Related]
14. Long-term in vivo recording of circadian rhythms in brains of freely moving mice. Mei L; Fan Y; Lv X; Welsh DK; Zhan C; Zhang EE Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4276-4281. PubMed ID: 29610316 [TBL] [Abstract][Full Text] [Related]
15. Harmine lengthens circadian period of the mammalian molecular clock in the suprachiasmatic nucleus. Kondoh D; Yamamoto S; Tomita T; Miyazaki K; Itoh N; Yasumoto Y; Oike H; Doi R; Oishi K Biol Pharm Bull; 2014; 37(8):1422-7. PubMed ID: 25087965 [TBL] [Abstract][Full Text] [Related]
16. Oxyntomodulin regulates resetting of the liver circadian clock by food. Landgraf D; Tsang AH; Leliavski A; Koch CE; Barclay JL; Drucker DJ; Oster H Elife; 2015 Mar; 4():e06253. PubMed ID: 25821984 [TBL] [Abstract][Full Text] [Related]
17. Heavy Water Lengthens the Molecular Circadian Clock Period in the Suprachiasmatic Nucleus of Mice In Vitro. Sujino M; Koinuma S; Minami Y; Shigeyoshi Y J Biol Rhythms; 2021 Aug; 36(4):410-418. PubMed ID: 33969745 [TBL] [Abstract][Full Text] [Related]
18. Rhythmic Release of Corticosterone Induces Circadian Clock Gene Expression in the Cerebellum. Bering T; Hertz H; Rath MF Neuroendocrinology; 2020; 110(7-8):604-615. PubMed ID: 31557761 [TBL] [Abstract][Full Text] [Related]
19. Melatonin adjusts the expression pattern of clock genes in the suprachiasmatic nucleus and induces antidepressant-like effect in a mouse model of seasonal affective disorder. Nagy AD; Iwamoto A; Kawai M; Goda R; Matsuo H; Otsuka T; Nagasawa M; Furuse M; Yasuo S Chronobiol Int; 2015 May; 32(4):447-57. PubMed ID: 25515595 [TBL] [Abstract][Full Text] [Related]
20. Phase differences in expression of circadian clock genes in the central nucleus of the amygdala, dentate gyrus, and suprachiasmatic nucleus in the rat. Harbour VL; Weigl Y; Robinson B; Amir S PLoS One; 2014; 9(7):e103309. PubMed ID: 25068868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]