These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 25141610)
21. Gene regulation of Atlantic cod (Gadus morhua) larvae with focus on lipid digestion and phospholipid metabolism. Li K; Østensen MA; Attramadal K; Winge P; Sparstad T; Bakke I; Bones AM; Vadstein O; Kjørsvik E; Olsen Y Commun Agric Appl Biol Sci; 2013; 78(4):241-4. PubMed ID: 25141679 [No Abstract] [Full Text] [Related]
22. Temporal shifts of the Norway lobster (Nephrops norvegicus) gut bacterial communities. Meziti A; Ramette A; Mente E; Kormas KA FEMS Microbiol Ecol; 2010 Nov; 74(2):472-84. PubMed ID: 20831590 [TBL] [Abstract][Full Text] [Related]
23. A novel systemic granulomatous inflammatory disease in farmed Atlantic cod, Gadus morhua L., associated with a bacterium belonging to the genus Francisella. Olsen AB; Mikalsen J; Rode M; Alfjorden A; Hoel E; Straum-Lie K; Haldorsen R; Colquhoun DJ J Fish Dis; 2006 May; 29(5):307-11. PubMed ID: 16677321 [No Abstract] [Full Text] [Related]
24. Lignocellulolytic enzymes and bacteria associated with the digestive tracts of Stenochironomus (Diptera: Chironomidae) larvae. Koroiva R; Souza CW; Toyama D; Henrique-Silva F; Fonseca-Gessner AA Genet Mol Res; 2013 Apr; 12(3):3421-34. PubMed ID: 23613276 [TBL] [Abstract][Full Text] [Related]
25. Identification of bacterial microflora in the midgut of the larvae and adult of wild caught Anopheles stephensi: a step toward finding suitable paratransgenesis candidates. Chavshin AR; Oshaghi MA; Vatandoost H; Pourmand MR; Raeisi A; Enayati AA; Mardani N; Ghoorchian S Acta Trop; 2012 Feb; 121(2):129-34. PubMed ID: 22074685 [TBL] [Abstract][Full Text] [Related]
26. rRNA-based analysis to monitor succession of faecal bacterial communities in Holstein calves. Uyeno Y; Sekiguchi Y; Kamagata Y Lett Appl Microbiol; 2010 Nov; 51(5):570-7. PubMed ID: 20849397 [TBL] [Abstract][Full Text] [Related]
27. Autochthonous bacterial flora indicated by PCR-DGGE of 16S rRNA gene fragments from the alimentary tract of Costelytra zealandica (Coleoptera: Scarabaeidae). Zhang H; Jackson TA J Appl Microbiol; 2008 Nov; 105(5):1277-85. PubMed ID: 18713286 [TBL] [Abstract][Full Text] [Related]
28. Expression of the oligopeptide transporter, PepT1, in larval Atlantic cod (Gadus morhua). Amberg JJ; Myr C; Kamisaka Y; Jordal AE; Rust MB; Hardy RW; Koedijk R; Rønnestad I Comp Biochem Physiol B Biochem Mol Biol; 2008 Jun; 150(2):177-82. PubMed ID: 18396432 [TBL] [Abstract][Full Text] [Related]
29. Characterisation and expression of secretory phospholipase A2 group IB during ontogeny of Atlantic cod ( Gadus morhua). Sæle Ø; Nordgreen A; Olsvik PA; Hamre K Br J Nutr; 2011 Jan; 105(2):228-37. PubMed ID: 20836903 [TBL] [Abstract][Full Text] [Related]
30. Diversity of protease-producing marine bacteria from sub-antarctic environments. Cristóbal HA; López MA; Kothe E; Abate CM J Basic Microbiol; 2011 Dec; 51(6):590-600. PubMed ID: 21656810 [TBL] [Abstract][Full Text] [Related]
31. Bacteria in the gut of Japanese honeybee, Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. Yoshiyama M; Kimura K J Invertebr Pathol; 2009 Oct; 102(2):91-6. PubMed ID: 19616552 [TBL] [Abstract][Full Text] [Related]
32. Changes in the intestinal microbiota of wild Atlantic cod Gadus morhua L. upon captive rearing. Dhanasiri AK; Brunvold L; Brinchmann MF; Korsnes K; Bergh Ø; Kiron V Microb Ecol; 2011 Jan; 61(1):20-30. PubMed ID: 20424834 [TBL] [Abstract][Full Text] [Related]
33. Switching on the light: using metagenomic shotgun sequencing to characterize the intestinal microbiome of Atlantic cod. Riiser ES; Haverkamp THA; Varadharajan S; Borgan Ø; Jakobsen KS; Jentoft S; Star B Environ Microbiol; 2019 Jul; 21(7):2576-2594. PubMed ID: 31091345 [TBL] [Abstract][Full Text] [Related]
34. Comparison of the Norway lobster (Nephrops norvegicus) gut bacterial communities using 16S rDNA clone libraries and pyrosequencing. Meziti A; Kormas KA Anaerobe; 2013 Oct; 23():9-11. PubMed ID: 23933515 [TBL] [Abstract][Full Text] [Related]
35. Bacterial community assembly in Atlantic cod larvae (Gadus morhua): contributions of ecological processes and metacommunity structure. Vestrum RI; Attramadal KJK; Vadstein O; Gundersen MS; Bakke I FEMS Microbiol Ecol; 2020 Sep; 96(9):. PubMed ID: 32816010 [TBL] [Abstract][Full Text] [Related]
36. Evaluation of candidate reference genes in Q-PCR studies of Atlantic cod (Gadus morhua) ontogeny, with emphasis on the gastrointestinal tract. Saele Ø; Nordgreen A; Hamre K; Olsvik PA Comp Biochem Physiol B Biochem Mol Biol; 2009 Jan; 152(1):94-101. PubMed ID: 18957329 [TBL] [Abstract][Full Text] [Related]
38. Quantification of total viable bacteria on fish fillets by using ethidium bromide monoazide real-time polymerase chain reaction. Lee JL; Levin RE Int J Food Microbiol; 2007 Sep; 118(3):312-7. PubMed ID: 17727991 [TBL] [Abstract][Full Text] [Related]
39. Phylogenetic analysis of bacterial communities associated with larvae of the Atlantic halibut propose succession from a uniform normal flora. Jensen S; Ovreås L; Bergh O; Torsvik V Syst Appl Microbiol; 2004 Nov; 27(6):728-36. PubMed ID: 15612631 [TBL] [Abstract][Full Text] [Related]
40. Development of a continuous cell line from larval Atlantic cod (Gadus morhua) and its use in the study of the microsporidian, Loma morhua. MacLeod MJ; Vo NTK; Mikhaeil MS; Monaghan SR; Alexander JAN; Saran MK; Lee LEJ J Fish Dis; 2018 Sep; 41(9):1359-1372. PubMed ID: 29882595 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]