BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2514185)

  • 1. Antimicrobial peptides, isolated from horseshoe crab hemocytes, tachyplesin II, and polyphemusins I and II: chemical structures and biological activity.
    Miyata T; Tokunaga F; Yoneya T; Yoshikawa K; Iwanaga S; Niwa M; Takao T; Shimonishi Y
    J Biochem; 1989 Oct; 106(4):663-8. PubMed ID: 2514185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modified horseshoe crab peptides target and kill bacteria inside host cells.
    Amiss AS; von Pein JB; Webb JR; Condon ND; Harvey PJ; Phan MD; Schembri MA; Currie BJ; Sweet MJ; Craik DJ; Kapetanovic R; Henriques ST; Lawrence N
    Cell Mol Life Sci; 2021 Dec; 79(1):38. PubMed ID: 34971427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pDNA-tachyplesin treatment stimulates the immune system and increases the probability of apoptosis in MC4-L2 tumor cells.
    Mahmoudi-Filabadi F; Doosti A
    Amino Acids; 2024 May; 56(1):34. PubMed ID: 38691208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primary structure and cellular localization of callinectin, an antimicrobial peptide from the blue crab.
    Noga EJ; Stone KL; Wood A; Gordon WL; Robinette D
    Dev Comp Immunol; 2011 Apr; 35(4):409-15. PubMed ID: 21115038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure.
    Nakamura T; Furunaka H; Miyata T; Tokunaga F; Muta T; Iwanaga S; Niwa M; Takao T; Shimonishi Y
    J Biol Chem; 1988 Nov; 263(32):16709-13. PubMed ID: 3141410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of tachyplesin I injury to bacterial membranes and intracellular enzymes, determined by laser confocal scanning microscopy and flow cytometry.
    Hong J; Guan W; Jin G; Zhao H; Jiang X; Dai J
    Microbiol Res; 2015 Jan; 170():69-77. PubMed ID: 25267486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity.
    Steinberg DA; Hurst MA; Fujii CA; Kung AH; Ho JF; Cheng FC; Loury DJ; Fiddes JC
    Antimicrob Agents Chemother; 1997 Aug; 41(8):1738-42. PubMed ID: 9257752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins.
    Kokryakov VN; Harwig SS; Panyutich EA; Shevchenko AA; Aleshina GM; Shamova OV; Korneva HA; Lehrer RI
    FEBS Lett; 1993 Jul; 327(2):231-6. PubMed ID: 8335113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-Activity and -Toxicity Relationships of the Antimicrobial Peptide Tachyplesin-1.
    Edwards IA; Elliott AG; Kavanagh AM; Blaskovich MAT; Cooper MA
    ACS Infect Dis; 2017 Dec; 3(12):917-926. PubMed ID: 28960954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of Amphipathicity and Hydrophobicity to the Antimicrobial Activity and Cytotoxicity of β-Hairpin Peptides.
    Edwards IA; Elliott AG; Kavanagh AM; Zuegg J; Blaskovich MA; Cooper MA
    ACS Infect Dis; 2016 Jun; 2(6):442-450. PubMed ID: 27331141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-function relationships of tachyplesins and their analogues.
    Iwanaga S; Muta T; Shigenaga T; Seki N; Kawano K; Katsu T; Kawabata S
    Ciba Found Symp; 1994; 186():160-74; discussion 174-5. PubMed ID: 7768150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signaling by two-component system noncognate partners promotes intrinsic tolerance to polymyxin B in uropathogenic Escherichia coli.
    Guckes KR; Breland EJ; Zhang EW; Hanks SC; Gill NK; Algood HM; Schmitz JE; Stratton CW; Hadjifrangiskou M
    Sci Signal; 2017 Jan; 10(461):. PubMed ID: 28074004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propelling Immunotherapy Combinations Into the Clinic.
    Tchekmedyian N; Gray JE; Creelan BC; Chiappori AA; Beg AA; Soliman H; Perez BA; Antonia SJ
    Oncology (Williston Park); 2015 Dec; 29(12):990-1002. PubMed ID: 26680224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo assessment of 6-deoxy-6-[18F]fluoro-D-galactose as a PET tracer for studying galactose metabolism.
    Ishiwata K; Tomura M; Ido T; Iwata R; Itoh J; Kameyama M
    Int J Rad Appl Instrum B; 1989; 16(8):775-81. PubMed ID: 2621112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Proteomic Profiling of Tachyplesin I Targets in U251 Gliomaspheres.
    Li X; Dai J; Tang Y; Li L; Jin G
    Mar Drugs; 2017 Jan; 15(1):. PubMed ID: 28106765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial resistance crisis: could artificial intelligence be the solution?
    Liu GY; Yu D; Fan MM; Zhang X; Jin ZY; Tang C; Liu XF
    Mil Med Res; 2024 Jan; 11(1):7. PubMed ID: 38254241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a Novel Peptide with Antimicrobial and Mineralising Properties for Caries Management.
    Zhang OL; Niu JY; Yu OY; Mei ML; Jakubovics NS; Chu CH
    Pharmaceutics; 2023 Oct; 15(11):. PubMed ID: 38004539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Host Defense Proteins and Peptides with Lipopolysaccharide-Binding Activity from Marine Invertebrates and Their Therapeutic Potential in Gram-Negative Sepsis.
    Solov'eva TF; Bakholdina SI; Naberezhnykh GA
    Mar Drugs; 2023 Nov; 21(11):. PubMed ID: 37999405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Marine Invertebrate Antimicrobial Peptides and Their Potential as Novel Peptide Antibiotics.
    Guryanova SV; Balandin SV; Belogurova-Ovchinnikova OY; Ovchinnikova TV
    Mar Drugs; 2023 Sep; 21(10):. PubMed ID: 37888438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adapting antibacterial display to identify serum-active macrocyclic peptide antibiotics.
    Randall JR; Groover KE; O'Donnell AC; Garza JM; Cole TJ; Davies BW
    PNAS Nexus; 2023 Aug; 2(8):pgad270. PubMed ID: 37637199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.