These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 25141922)

  • 1. Selective augmentation of striatal functional connectivity following NMDA receptor antagonism: implications for psychosis.
    Dandash O; Harrison BJ; Adapa R; Gaillard R; Giorlando F; Wood SJ; Fletcher PC; Fornito A
    Neuropsychopharmacology; 2015 Feb; 40(3):622-31. PubMed ID: 25141922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered striatal functional connectivity in subjects with an at-risk mental state for psychosis.
    Dandash O; Fornito A; Lee J; Keefe RS; Chee MW; Adcock RA; Pantelis C; Wood SJ; Harrison BJ
    Schizophr Bull; 2014 Jul; 40(4):904-13. PubMed ID: 23861539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subanaesthetic ketamine treatment alters prefrontal cortex connectivity with thalamus and ascending subcortical systems.
    Dawson N; Morris BJ; Pratt JA
    Schizophr Bull; 2013 Mar; 39(2):366-77. PubMed ID: 22114100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamate and the neural basis of the subjective effects of ketamine: a pharmaco-magnetic resonance imaging study.
    Deakin JF; Lees J; McKie S; Hallak JE; Williams SR; Dursun SM
    Arch Gen Psychiatry; 2008 Feb; 65(2):154-64. PubMed ID: 18250253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ketamine-Induced Modulation of the Thalamo-Cortical Network in Healthy Volunteers As a Model for Schizophrenia.
    Höflich A; Hahn A; Küblböck M; Kranz GS; Vanicek T; Windischberger C; Saria A; Kasper S; Winkler D; Lanzenberger R
    Int J Neuropsychopharmacol; 2015 Apr; 18(9):. PubMed ID: 25896256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses.
    Krystal JH; Karper LP; Seibyl JP; Freeman GK; Delaney R; Bremner JD; Heninger GR; Bowers MB; Charney DS
    Arch Gen Psychiatry; 1994 Mar; 51(3):199-214. PubMed ID: 8122957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopaminergic drug effects on physiological connectivity in a human cortico-striato-thalamic system.
    Honey GD; Suckling J; Zelaya F; Long C; Routledge C; Jackson S; Ng V; Fletcher PC; Williams SC; Brown J; Bullmore ET
    Brain; 2003 Aug; 126(Pt 8):1767-81. PubMed ID: 12805106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence that Subanesthetic Doses of Ketamine Cause Sustained Disruptions of NMDA and AMPA-Mediated Frontoparietal Connectivity in Humans.
    Muthukumaraswamy SD; Shaw AD; Jackson LE; Hall J; Moran R; Saxena N
    J Neurosci; 2015 Aug; 35(33):11694-706. PubMed ID: 26290246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ketamine on prefrontal and striatal regions in an overt verbal fluency task: a functional magnetic resonance imaging study.
    Fu CH; Abel KM; Allin MP; Gasston D; Costafreda SG; Suckling J; Williams SC; McGuire PK
    Psychopharmacology (Berl); 2005 Nov; 183(1):92-102. PubMed ID: 16228196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of (S)-ketamine on striatal dopamine: a [11C]raclopride PET study of a model psychosis in humans.
    Vollenweider FX; Vontobel P; Oye I; Hell D; Leenders KL
    J Psychiatr Res; 2000; 34(1):35-43. PubMed ID: 10696831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antagonism at the NR2B subunit of NMDA receptors induces increased connectivity of the prefrontal and subcortical regions regulating reward behavior.
    Gass N; Becker R; Sack M; Schwarz AJ; Reinwald J; Cosa-Linan A; Zheng L; von Hohenberg CC; Inta D; Meyer-Lindenberg A; Weber-Fahr W; Gass P; Sartorius A
    Psychopharmacology (Berl); 2018 Apr; 235(4):1055-1068. PubMed ID: 29305627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ketamine Dysregulates the Amplitude and Connectivity of High-Frequency Oscillations in Cortical-Subcortical Networks in Humans: Evidence From Resting-State Magnetoencephalography-Recordings.
    Rivolta D; Heidegger T; Scheller B; Sauer A; Schaum M; Birkner K; Singer W; Wibral M; Uhlhaas PJ
    Schizophr Bull; 2015 Sep; 41(5):1105-14. PubMed ID: 25987642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adolescent alcohol exposure decreases frontostriatal resting-state functional connectivity in adulthood.
    Broadwater MA; Lee SH; Yu Y; Zhu H; Crews FT; Robinson DL; Shih YI
    Addict Biol; 2018 Mar; 23(2):810-823. PubMed ID: 28691248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ketamine on brain function during smooth pursuit eye movements.
    Steffens M; Becker B; Neumann C; Kasparbauer AM; Meyhöfer I; Weber B; Mehta MA; Hurlemann R; Ettinger U
    Hum Brain Mapp; 2016 Nov; 37(11):4047-4060. PubMed ID: 27342447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative and interactive human psychopharmacologic effects of ketamine and amphetamine: implications for glutamatergic and dopaminergic model psychoses and cognitive function.
    Krystal JH; Perry EB; Gueorguieva R; Belger A; Madonick SH; Abi-Dargham A; Cooper TB; Macdougall L; Abi-Saab W; D'Souza DC
    Arch Gen Psychiatry; 2005 Sep; 62(9):985-94. PubMed ID: 16143730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ketamine decreases resting state functional network connectivity in healthy subjects: implications for antidepressant drug action.
    Scheidegger M; Walter M; Lehmann M; Metzger C; Grimm S; Boeker H; Boesiger P; Henning A; Seifritz E
    PLoS One; 2012; 7(9):e44799. PubMed ID: 23049758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological modulation of the neural basis underlying inhibition of return (IOR) in the human 5-HT2A agonist and NMDA antagonist model of psychosis.
    Daumann J; Heekeren K; Neukirch A; Thiel CM; Möller-Hartmann W; Gouzoulis-Mayfrank E
    Psychopharmacology (Berl); 2008 Nov; 200(4):573-83. PubMed ID: 18649072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers.
    Breier A; Malhotra AK; Pinals DA; Weisenfeld NI; Pickar D
    Am J Psychiatry; 1997 Jun; 154(6):805-11. PubMed ID: 9167508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frontal responses during learning predict vulnerability to the psychotogenic effects of ketamine: linking cognition, brain activity, and psychosis.
    Corlett PR; Honey GD; Aitken MR; Dickinson A; Shanks DR; Absalom AR; Lee M; Pomarol-Clotet E; Murray GK; McKenna PJ; Robbins TW; Bullmore ET; Fletcher PC
    Arch Gen Psychiatry; 2006 Jun; 63(6):611-21. PubMed ID: 16754834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacological fMRI: Effects of subanesthetic ketamine on resting-state functional connectivity in the default mode network, salience network, dorsal attention network and executive control network.
    Mueller F; Musso F; London M; de Boer P; Zacharias N; Winterer G
    Neuroimage Clin; 2018; 19():745-757. PubMed ID: 30003027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.