BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

689 related articles for article (PubMed ID: 25141976)

  • 1. Proline-rich antimicrobial peptides: potential therapeutics against antibiotic-resistant bacteria.
    Li W; Tailhades J; O'Brien-Simpson NM; Separovic F; Otvos L; Hossain MA; Wade JD
    Amino Acids; 2014 Oct; 46(10):2287-94. PubMed ID: 25141976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial peptides: promising alternatives to conventional antibiotics.
    Baltzer SA; Brown MH
    J Mol Microbiol Biotechnol; 2011; 20(4):228-35. PubMed ID: 21894027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic antibiofilm peptides.
    de la Fuente-Núñez C; Cardoso MH; de Souza Cândido E; Franco OL; Hancock RE
    Biochim Biophys Acta; 2016 May; 1858(5):1061-9. PubMed ID: 26724202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial peptides: new candidates in the fight against bacterial infections.
    Toke O
    Biopolymers; 2005; 80(6):717-35. PubMed ID: 15880793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial peptides: their physicochemical properties and therapeutic application.
    Kang SJ; Kim DH; Mishig-Ochir T; Lee BJ
    Arch Pharm Res; 2012 Mar; 35(3):409-13. PubMed ID: 22477186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An analog of the host-defense peptide hymenochirin-1B with potent broad-spectrum activity against multidrug-resistant bacteria and immunomodulatory properties.
    Mechkarska M; Prajeep M; Radosavljevic GD; Jovanovic IP; Al Baloushi A; Sonnevend A; Lukic ML; Conlon JM
    Peptides; 2013 Dec; 50():153-9. PubMed ID: 24172540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides.
    Nuri R; Shprung T; Shai Y
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt B):3089-100. PubMed ID: 26051126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro activity of novel in silico-developed antimicrobial peptides against a panel of bacterial pathogens.
    Romani AA; Baroni MC; Taddei S; Ghidini F; Sansoni P; Cavirani S; Cabassi CS
    J Pept Sci; 2013 Sep; 19(9):554-65. PubMed ID: 23893489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced membrane disruption and antibiotic action against pathogenic bacteria by designed histidine-rich peptides at acidic pH.
    Mason AJ; Gasnier C; Kichler A; Prévost G; Aunis D; Metz-Boutigue MH; Bechinger B
    Antimicrob Agents Chemother; 2006 Oct; 50(10):3305-11. PubMed ID: 17005809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial activity of doubly-stapled alanine/lysine-based peptides.
    Dinh TT; Kim DH; Luong HX; Lee BJ; Kim YW
    Bioorg Med Chem Lett; 2015 Sep; 25(18):4016-9. PubMed ID: 26235946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms of membrane targeting antibiotics.
    Epand RM; Walker C; Epand RF; Magarvey NA
    Biochim Biophys Acta; 2016 May; 1858(5):980-7. PubMed ID: 26514603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of proline residues on the antibacterial and synergistic activities of alpha-helical peptides.
    Zhang L; Benz R; Hancock RE
    Biochemistry; 1999 Jun; 38(25):8102-11. PubMed ID: 10387056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.
    Allahverdiyev AM; Kon KV; Abamor ES; Bagirova M; Rafailovich M
    Expert Rev Anti Infect Ther; 2011 Nov; 9(11):1035-52. PubMed ID: 22029522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical shortage of new antibiotics in development against multidrug-resistant bacteria-Time to react is now.
    Freire-Moran L; Aronsson B; Manz C; Gyssens IC; So AD; Monnet DL; Cars O;
    Drug Resist Updat; 2011 Apr; 14(2):118-24. PubMed ID: 21435939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial proline-rich peptides from the hemolymph of marine snail Rapana venosa.
    Dolashka P; Moshtanska V; Borisova V; Dolashki A; Stevanovic S; Dimanov T; Voelter W
    Peptides; 2011 Jul; 32(7):1477-83. PubMed ID: 21703315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution structure of a novel tryptophan-rich peptide with bidirectional antimicrobial activity.
    Wei SY; Wu JM; Kuo YY; Chen HL; Yip BS; Tzeng SR; Cheng JW
    J Bacteriol; 2006 Jan; 188(1):328-34. PubMed ID: 16352849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The development of antimicrobial γ-AApeptides.
    She F; Oyesiku O; Zhou P; Zhuang S; Koenig DW; Cai J
    Future Med Chem; 2016 Jun; 8(10):1101-10. PubMed ID: 27284624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting intracellular pathogenic bacteria with unnatural proline-rich peptides: coupling antibacterial activity with macrophage penetration.
    Kuriakose J; Hernandez-Gordillo V; Nepal M; Brezden A; Pozzi V; Seleem MN; Chmielewski J
    Angew Chem Int Ed Engl; 2013 Sep; 52(37):9664-7. PubMed ID: 23960012
    [No Abstract]   [Full Text] [Related]  

  • 19. Antimicrobial γ-AApeptides (WO2013112548): a patent evaluation.
    Teng P; Wu H; Lin L; Cai J
    Expert Opin Ther Pat; 2015 Jan; 25(1):111-8. PubMed ID: 25331592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Library Approach to Cationic Amphiphilic Polyproline Helices that Target Intracellular Pathogenic Bacteria.
    Nepal M; Mohamed MF; Blade R; Eldesouky HE; N Anderson T; Seleem MN; Chmielewski J
    ACS Infect Dis; 2018 Sep; 4(9):1300-1305. PubMed ID: 29979033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.