These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 25142151)

  • 1. Internal models of upper limb prosthesis users when grasping and lifting a fragile object with their prosthetic limb.
    Lum PS; Black I; Holley RJ; Barth J; Dromerick AW
    Exp Brain Res; 2014 Dec; 232(12):3785-95. PubMed ID: 25142151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback.
    Brown JD; Paek A; Syed M; O'Malley MK; Shewokis PA; Contreras-Vidal JL; Davis AJ; Gillespie RB
    J Neuroeng Rehabil; 2015 Nov; 12():104. PubMed ID: 26602538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraneural sensory feedback restores grip force control and motor coordination while using a prosthetic hand.
    Clemente F; Valle G; Controzzi M; Strauss I; Iberite F; Stieglitz T; Granata G; Rossini PM; Petrini F; Micera S; Cipriani C
    J Neural Eng; 2019 Apr; 16(2):026034. PubMed ID: 30736030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective deficits of grip force control during object manipulation in patients with reduced sensibility of the grasping digits.
    Nowak DA; Hermsdörfer J
    Neurosci Res; 2003 Sep; 47(1):65-72. PubMed ID: 12941448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anticipatory scaling of grip forces when lifting objects of everyday life.
    Hermsdörfer J; Li Y; Randerath J; Goldenberg G; Eidenmüller S
    Exp Brain Res; 2011 Jul; 212(1):19-31. PubMed ID: 21541765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrotactile Feedback Improves Grip Force Control and Enables Object Stiffness Recognition While Using a Myoelectric Hand.
    Chai G; Wang H; Li G; Sheng X; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1310-1320. PubMed ID: 35533165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preserved grip selection planning in chronic unilateral upper extremity amputees.
    Philip BA; Frey SH
    Exp Brain Res; 2011 Oct; 214(3):437-52. PubMed ID: 21863261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Representational Neural Mapping of Dexterous Grasping Before Lifting in Humans.
    Marneweck M; Grafton ST
    J Neurosci; 2020 Mar; 40(13):2708-2716. PubMed ID: 32015024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The intermanual transfer of anticipatory force control in precision grip lifting is not influenced by the perception of weight.
    Chang EC; Flanagan JR; Goodale MA
    Exp Brain Res; 2008 Feb; 185(2):319-29. PubMed ID: 17934725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.
    Witteveen HJ; Rietman HS; Veltink PH
    Prosthet Orthot Int; 2015 Jun; 39(3):204-12. PubMed ID: 24567348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distributing vertical forces between the digits during gripping and lifting: the effects of rotating the hand versus rotating the object.
    Quaney BM; Cole KJ
    Exp Brain Res; 2004 Mar; 155(2):145-55. PubMed ID: 14661118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grip control and motor coordination with implanted and surface electrodes while grasping with an osseointegrated prosthetic hand.
    Mastinu E; Clemente F; Sassu P; Aszmann O; Brånemark R; Håkansson B; Controzzi M; Cipriani C; Ortiz-Catalan M
    J Neuroeng Rehabil; 2019 Apr; 16(1):49. PubMed ID: 30975158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired grip force modulation in the ipsilesional hand after unilateral middle cerebral artery stroke.
    Quaney BM; Perera S; Maletsky R; Luchies CW; Nudo RJ
    Neurorehabil Neural Repair; 2005 Dec; 19(4):338-49. PubMed ID: 16263966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels.
    De Nunzio AM; Dosen S; Lemling S; Markovic M; Schweisfurth MA; Ge N; Graimann B; Falla D; Farina D
    Exp Brain Res; 2017 Aug; 235(8):2547-2559. PubMed ID: 28550423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grip Force Dynamics During Exoskeleton-Assisted and Virtual Grasping.
    Ritter C; Senne M; Berberich N; Yilmazer K; Paredes-Acuna N; Cheng G
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual and tactile information about object-curvature control fingertip forces and grasp kinematics in human dexterous manipulation.
    Jenmalm P; Dahlstedt S; Johansson RS
    J Neurophysiol; 2000 Dec; 84(6):2984-97. PubMed ID: 11110826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bimanual Lifting: Do Fingertip Forces Work Independently or Interactively?
    Dimitriou P; Buckingham G
    J Mot Behav; 2018; 50(1):26-36. PubMed ID: 28632104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myocontrol is closed-loop control: incidental feedback is sufficient for scaling the prosthesis force in routine grasping.
    Markovic M; Schweisfurth MA; Engels LF; Farina D; Dosen S
    J Neuroeng Rehabil; 2018 Sep; 15(1):81. PubMed ID: 30176929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precision-grip force changes in the anatomical and prosthetic limb during predictable load increases.
    Weeks DL; Wallace SA; Noteboom JT
    Exp Brain Res; 2000 Jun; 132(3):404-10. PubMed ID: 10883390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of unilateral brain damage on anticipatory grip force scaling when lifting everyday objects.
    Eidenmüller S; Randerath J; Goldenberg G; Li Y; Hermsdörfer J
    Neuropsychologia; 2014 Aug; 61():222-34. PubMed ID: 24978304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.