BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 25143002)

  • 1. Effects of N-acetyl-L-cysteine-capped CdTe quantum dots on bovine serum albumin and bovine hemoglobin: isothermal titration calorimetry and spectroscopic investigations.
    Sun H; Cui E; Tan Z; Liu R
    J Biochem Mol Toxicol; 2014 Dec; 28(12):549-57. PubMed ID: 25143002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the interaction of a new synthesized CdTe quantum dots with human serum albumin and bovine serum albumin by spectroscopic methods.
    Bardajee GR; Hooshyar Z
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():806-15. PubMed ID: 26952487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic investigations on the conformational changes of lysozyme effected by different sizes of N-acetyl-l-cysteine-capped CdTe quantum dots.
    Wu Q; Wan J; He Z; Liu R
    J Biochem Mol Toxicol; 2017 Dec; 31(12):. PubMed ID: 28902442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic investigations on the effect of N-acetyl-L-cysteine-capped CdTe Quantum Dots on catalase.
    Sun H; Yang B; Cui E; Liu R
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():692-9. PubMed ID: 24910977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic investigation of the toxicity interaction of ZnSe@ZnS QDs on BSA by spectroscopic and microcalorimetry techniques.
    Ding L; Zhou P; Zhan H; Zhao X; Chen C; He Z
    Chemosphere; 2013 Aug; 92(8):892-7. PubMed ID: 23535467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of CdTe quantum dots size on the conformational changes of human serum albumin: results of spectroscopy and isothermal titration calorimetry.
    Yang B; Liu R; Hao X; Wu Y; Du J
    Biol Trace Elem Res; 2013 Oct; 155(1):150-8. PubMed ID: 23904329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction and energy transfer studies between bovine serum albumin and CdTe quantum dots conjugates: CdTe QDs as energy acceptor probes.
    Kotresh MG; Inamdar LS; Shivkumar MA; Adarsh KS; Jagatap BN; Mulimani BG; Advirao GM; Inamdar SR
    Luminescence; 2017 Jun; 32(4):631-639. PubMed ID: 27808463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the interaction of CdTe quantum dots with coumaric acid and caffeic acid based on fluorescence reversible tune.
    Fan X; Liu S; He Y
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):23-30. PubMed ID: 21816585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanism of copper-zinc superoxide dismutase activity change exposed to N-acetyl-L-cysteine-capped CdTe quantum dots-induced oxidative damage in mouse primary hepatocytes and nephrocytes.
    Sun H; Cui E; Liu R
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):18267-77. PubMed ID: 26210583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Study on the synchronous interactions between different thiol-capped CdTe quantum dots and BSA].
    Ma JJ; Liang JG; Han HY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Apr; 30(4):1039-43. PubMed ID: 20545157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fluorescence nanoprobe of N-Acetyl-L-Cysteine capped CdTe QDs for sensitive detection of nitrofurazone.
    Wang Y; Zhang F; Liu J; Yang B; Yuan Y; Zhou Y; Bi S
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Sep; 297():122709. PubMed ID: 37058841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic investigation of the effects of aqueous-phase prepared CdTe quantum dots on protein hemoglobin at the molecular level.
    Guo D; Liu R
    J Biochem Mol Toxicol; 2017 Oct; 31(10):. PubMed ID: 28661553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epitope imprinted polymer coating CdTe quantum dots for specific recognition and direct fluorescent quantification of the target protein bovine serum albumin.
    Yang YQ; He XW; Wang YZ; Li WY; Zhang YK
    Biosens Bioelectron; 2014 Apr; 54():266-72. PubMed ID: 24287415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New strategy for the evaluation of CdTe quantum dot toxicity targeted to bovine serum albumin.
    Zhao L; Liu R; Zhao X; Yang B; Gao C; Hao X; Wu Y
    Sci Total Environ; 2009 Sep; 407(18):5019-23. PubMed ID: 19540569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the interaction between bovine serum albumin and ZnS quantum dots with spectroscopic techniques.
    Wu D; Chen Z; Liu X
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 84(1):178-83. PubMed ID: 21968207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bovine serum albumin coated CuInS2 quantum dots as a near-infrared fluorescence probe for 2,4,6-trinitrophenol detection.
    Liu S; Shi F; Chen L; Su X
    Talanta; 2013 Nov; 116():870-5. PubMed ID: 24148487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic investigation of interaction between bovine serum albumin and amine-functionalized silicon quantum dots.
    Chatterjee S; Mukherjee TK
    Phys Chem Chem Phys; 2014 May; 16(18):8400-8. PubMed ID: 24663102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive study of interaction between biocompatible PEG-InP/ZnS QDs and bovine serum albumin.
    Sannaikar MS; Inamdar LS; Pujar GH; Wari MN; Balasinor NH; Inamdar SR
    Luminescence; 2018 May; 33(3):495-504. PubMed ID: 29282888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conjugation and fluorescence quenching between bovine serum albumin and L-cysteine capped CdSe/CdS quantum dots.
    Wang Q; Ye F; Liu P; Min X; Li X
    Protein Pept Lett; 2011 Apr; 18(4):410-4. PubMed ID: 21121888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterizations of ultra-small ZnS and Zn(1-x)Fe(x)S quantum dots in aqueous media and spectroscopic study of their interactions with bovine serum albumin.
    Khani O; Rajabi HR; Yousefi MH; Khosravi AA; Jannesari M; Shamsipur M
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jul; 79(2):361-9. PubMed ID: 21482179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.