BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25143058)

  • 1. Multi-stress resistance in Lactococcus lactis is actually escape from purine-induced stress sensitivity.
    Ryssel M; Hviid AM; Dawish MS; Haaber J; Hammer K; Martinussen J; Kilstrup M
    Microbiology (Reading); 2014 Nov; 160(Pt 11):2551-2559. PubMed ID: 25143058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acid- and multistress-resistant mutants of Lactococcus lactis : identification of intracellular stress signals.
    Rallu F; Gruss A; Ehrlich SD; Maguin E
    Mol Microbiol; 2000 Feb; 35(3):517-28. PubMed ID: 10672175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of the small heat shock protein Lo18 from Oenococcus oeni in Lactococcus lactis improves its stress tolerance.
    Weidmann S; Maitre M; Laurent J; Coucheney F; Rieu A; Guzzo J
    Int J Food Microbiol; 2017 Apr; 247():18-23. PubMed ID: 27318622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA Macroarray profiling of Lactococcus lactis subsp. lactis IL1403 gene expression during environmental stresses.
    Xie Y; Chou LS; Cutler A; Weimer B
    Appl Environ Microbiol; 2004 Nov; 70(11):6738-47. PubMed ID: 15528540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glyceraldehyde-3-phosphate dehydrogenase regulation in Lactococcus lactis ssp. cremoris MG1363 or relA mutant at low pH.
    Mercade M; Cocaign-Bousquet M; Loubière P
    J Appl Microbiol; 2006 Jun; 100(6):1364-72. PubMed ID: 16696685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363.
    Wegmann U; O'Connell-Motherway M; Zomer A; Buist G; Shearman C; Canchaya C; Ventura M; Goesmann A; Gasson MJ; Kuipers OP; van Sinderen D; Kok J
    J Bacteriol; 2007 Apr; 189(8):3256-70. PubMed ID: 17307855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two nucleoside uptake systems in Lactococcus lactis: competition between purine nucleosides and cytidine allows for modulation of intracellular nucleotide pools.
    Martinussen J; Wadskov-Hansen SL; Hammer K
    J Bacteriol; 2003 Mar; 185(5):1503-8. PubMed ID: 12591866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early adaptation to oxygen is key to the industrially important traits of Lactococcus lactis ssp. cremoris during milk fermentation.
    Cretenet M; Le Gall G; Wegmann U; Even S; Shearman C; Stentz R; Jeanson S
    BMC Genomics; 2014 Dec; 15(1):1054. PubMed ID: 25467604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of metabolic flux on stress response pathways in Lactococcus lactis.
    Duwat P; Ehrlich SD; Gruss A
    Mol Microbiol; 1999 Feb; 31(3):845-58. PubMed ID: 10048028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactococcus lactis and stress.
    Rallu F; Gruss A; Maguin E
    Antonie Van Leeuwenhoek; 1996 Oct; 70(2-4):243-51. PubMed ID: 8879409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic characterization of the acid tolerance response in Lactococcus lactis MG1363.
    Budin-Verneuil A; Pichereau V; Auffray Y; Ehrlich DS; Maguin E
    Proteomics; 2005 Dec; 5(18):4794-807. PubMed ID: 16237734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation of Lactococcus lactis subspecies lactis and subspecies cremoris strains by their adaptive response to stresses.
    Kim WS; Ren J; Dunn NW
    FEMS Microbiol Lett; 1999 Feb; 171(1):57-65. PubMed ID: 9987842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactococcus lactis, a bacterial model for stress responses and survival.
    Duwat P; Cesselin B; Sourice S; Gruss A
    Int J Food Microbiol; 2000 Apr; 55(1-3):83-6. PubMed ID: 10791722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical and genetic map of the Lactococcus lactis subsp. cremoris MG1363 chromosome: comparison with that of Lactococcus lactis subsp. lactis IL 1403 reveals a large genome inversion.
    Le Bourgeois P; Lautier M; van den Berghe L; Gasson MJ; Ritzenthaler P
    J Bacteriol; 1995 May; 177(10):2840-50. PubMed ID: 7751295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning, sequencing and comparison of three lactococcal L-lactate dehydrogenase genes.
    Swindell SR; Griffin HG; Gasson MJ
    Microbiology (Reading); 1994 Jun; 140 ( Pt 6)():1301-5. PubMed ID: 8081494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of PprI from Deinococcus radiodurans Improves Lactic Acid Production and Stress Tolerance in Lactococcus lactis.
    Dong X; Tian B; Dai S; Li T; Guo L; Tan Z; Jiao Z; Jin Q; Wang Y; Hua Y
    PLoS One; 2015; 10(11):e0142918. PubMed ID: 26562776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A transcriptional activator, homologous to the Bacillus subtilis PurR repressor, is required for expression of purine biosynthetic genes in Lactococcus lactis.
    Kilstrup M; Martinussen J
    J Bacteriol; 1998 Aug; 180(15):3907-16. PubMed ID: 9683488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced acid-stress tolerance in Lactococcus lactis NZ9000 by overexpression of ABC transporters.
    Zhu Z; Yang J; Yang P; Wu Z; Zhang J; Du G
    Microb Cell Fact; 2019 Aug; 18(1):136. PubMed ID: 31409416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteome analysis of the purine stimulon from Lactococcus lactis.
    Beyer NH; Roepstorff P; Hammer K; Kilstrup M
    Proteomics; 2003 May; 3(5):786-97. PubMed ID: 12748956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of prophage-encoded endolysins contributes to autolysis of Lactococcus lactis.
    Visweswaran GR; Kurek D; Szeliga M; Pastrana FR; Kuipers OP; Kok J; Buist G
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):1099-1110. PubMed ID: 27660179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.