BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 25143282)

  • 1. [Developing and applying of a parentage identification approach based on high density genetic markers].
    Zhang Z; Luo Y; Li Q; He J; Gao N; Zhang H; Ding X; Zhang Q; Li J
    Yi Chuan; 2014 Aug; 36(8):835-41. PubMed ID: 25143282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical and statistical consideration on the use of the ISAG-ICAR-SNP bovine panel for parentage control, using the Illumina BeadChip technology: example on the German Holstein population.
    Schütz E; Brenig B
    Genet Sel Evol; 2015 Feb; 47(1):3. PubMed ID: 25651826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic evaluation of dairy cattle using a simple heritable genetic ground.
    Pribyl J; Rehout V; Citek J; Pribylova J
    J Sci Food Agric; 2010 Aug; 90(11):1765-73. PubMed ID: 20564310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probabilistic expert systems for forensic inference from DNA markers in horses: applications to confirm genealogies with lack of genetic data.
    Dobosz M; Bocci C; Bonuglia M; Grasso C; Merigioli S; Russo A; De Iuliis P
    J Hered; 2010; 101(2):240-5. PubMed ID: 19939967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How many markers are enough? Factors influencing parentage testing in different livestock populations.
    Strucken EM; Lee SH; Lee HK; Song KD; Gibson JP; Gondro C
    J Anim Breed Genet; 2016 Feb; 133(1):13-23. PubMed ID: 26234440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic evaluation using parentage information from genetic markers.
    Dodds KG; Tate ML; Sise JA
    J Anim Sci; 2005 Oct; 83(10):2271-9. PubMed ID: 16160036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of domestic production records, Interbull estimated breeding values, and single nucleotide polymorphism genetic markers to the single-step genomic evaluation of milk production.
    Přibyl J; Madsen P; Bauer J; Přibylová J; Simečková M; Vostrý L; Zavadilová L
    J Dairy Sci; 2013 Mar; 96(3):1865-73. PubMed ID: 23312993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient parentage assignment and pedigree reconstruction with dense single nucleotide polymorphism data.
    Hayes BJ
    J Dairy Sci; 2011 Apr; 94(4):2114-7. PubMed ID: 21427003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single nucleotide polymorphism set for paternal identification to reduce the costs of trait recording in commercial pig breeding.
    Harlizius B; Lopes MS; Duijvesteijn N; van de Goor LH; van Haeringen WA; Panneman H; Guimarães SE; Merks JW; Knol EF
    J Anim Sci; 2011 Jun; 89(6):1661-8. PubMed ID: 21239666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of breed composition in an admixed cattle population.
    Frkonja A; Gredler B; Schnyder U; Curik I; Sölkner J
    Anim Genet; 2012 Dec; 43(6):696-703. PubMed ID: 23061480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic prediction using imputed whole-genome sequence data in Holstein Friesian cattle.
    van Binsbergen R; Calus MP; Bink MC; van Eeuwijk FA; Schrooten C; Veerkamp RF
    Genet Sel Evol; 2015 Sep; 47(1):71. PubMed ID: 26381777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effectiveness of microsatellite and single nucleotide polymorphism markers for parentage analysis in European domestic pigs.
    Yu GC; Tang QZ; Long KR; Che TD; Li MZ; Shuai SR
    Genet Mol Res; 2015 Feb; 14(1):1362-70. PubMed ID: 25730075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for single nucleotide polymorphism selection for parentage assessment in goats.
    Talenti A; Nicolazzi EL; Chessa S; Frattini S; Moretti R; Coizet B; Nicoloso L; Colli L; Pagnacco G; Stella A; Ajmone-Marsan P; Ptak G; Crepaldi P
    J Dairy Sci; 2016 May; 99(5):3646-3653. PubMed ID: 26971153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of genotype error rate using samples with pedigree information--an application on the GeneChip Mapping 10K array.
    Hao K; Li C; Rosenow C; Hung Wong W
    Genomics; 2004 Oct; 84(4):623-30. PubMed ID: 15475239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pedigree- and marker-based methods in the estimation of genetic diversity in small groups of Holstein cattle.
    Engelsma KA; Veerkamp RF; Calus MP; Bijma P; Windig JJ
    J Anim Breed Genet; 2012 Jun; 129(3):195-205. PubMed ID: 22583324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of inbreeding depression in Holstein cattle using whole-genome SNP markers and alternative measures of genomic inbreeding.
    Bjelland DW; Weigel KA; Vukasinovic N; Nkrumah JD
    J Dairy Sci; 2013 Jul; 96(7):4697-706. PubMed ID: 23684028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of predictor traits on accuracy of genomic breeding values for feed intake based on a limited cow reference population.
    Pszczola M; Veerkamp RF; de Haas Y; Wall E; Strabel T; Calus MP
    Animal; 2013 Nov; 7(11):1759-68. PubMed ID: 23915541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An empirical comparison of SNPs and microsatellites for parentage and kinship assignment in a wild sockeye salmon (Oncorhynchus nerka) population.
    Hauser L; Baird M; Hilborn R; Seeb LW; Seeb JE
    Mol Ecol Resour; 2011 Mar; 11 Suppl 1():150-61. PubMed ID: 21429171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide association study identifies candidate markers for bull fertility in Holstein dairy cattle.
    Peñagaricano F; Weigel KA; Khatib H
    Anim Genet; 2012 Jul; 43 Suppl 1():65-71. PubMed ID: 22742504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of genomic selection for a sib-evaluated trait using identity-by-state and identity-by-descent relationships.
    Vela-Avitúa S; Meuwissen TH; Luan T; Ødegård J
    Genet Sel Evol; 2015 Feb; 47(1):9. PubMed ID: 25888184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.