These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 25143305)

  • 1. Proteomic analyses of ethanol tolerance in Lactobacillus buchneri NRRL B-30929.
    Liu S
    Proteomics; 2014 Nov; 14(21-22):2540-4. PubMed ID: 25143305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol tolerance assessment in recombinant E. coli of ethanol responsive genes from Lactobacillus buchneri NRRL B-30929.
    Liu S; Skory C; Qureshi N
    World J Microbiol Biotechnol; 2020 Nov; 36(12):179. PubMed ID: 33155123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The yajC gene from Lactobacillus buchneri and Escherichia coli and its role in ethanol tolerance.
    Liu S; Skory C; Qureshi N; Hughes S
    J Ind Microbiol Biotechnol; 2016 Apr; 43(4):441-50. PubMed ID: 26790414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of biomass hydrolysates and other substrates to ethanol and other chemicals by Lactobacillus buchneri*.
    Liu S; Bischoff KM; Hughes SR; Leathers TD; Price NP; Qureshi N; Rich JO
    Lett Appl Microbiol; 2009 Mar; 48(3):337-42. PubMed ID: 19187511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete genome sequence of Lactobacillus buchneri NRRL B-30929, a novel strain from a commercial ethanol plant.
    Liu S; Leathers TD; Copeland A; Chertkov O; Goodwin L; Mills DA
    J Bacteriol; 2011 Aug; 193(15):4019-20. PubMed ID: 21622751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactobacillus buchneri strain NRRL B-30929 converts a concentrated mixture of xylose and glucose into ethanol and other products.
    Liu S; Skinner-Nemec KA; Leathers TD
    J Ind Microbiol Biotechnol; 2008 Feb; 35(2):75-81. PubMed ID: 17940817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased ethanol tolerance associated with the pntAB locus of Oenococcus oeni and Lactobacillus buchneri.
    Liu S; Skory C; Liang X; Mills D; Qureshi N
    J Ind Microbiol Biotechnol; 2019 Nov; 46(11):1547-1556. PubMed ID: 31289974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis of protein expression in Lactobacillus plantarum in response to alkaline stress.
    Lee K; Rho BS; Pi K; Kim HJ; Choi YJ
    J Biotechnol; 2011 Apr; 153(1-2):1-7. PubMed ID: 21356255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis of the response to NaCl stress of Lactobacillus bulgaricus.
    Li C; Li PZ; Sun JW; Huo GC; Liu LB
    Biotechnol Lett; 2014 Nov; 36(11):2263-9. PubMed ID: 25048227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alcoholic fermentation and its prevention by Lactobacillus buchneri in whole crop rice silage.
    Nishino N; Hattori H; Kishida Y
    Lett Appl Microbiol; 2007 May; 44(5):538-43. PubMed ID: 17451522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Salt Stress on Carbohydrate Metabolism of Lactobacillus plantarum ATCC 14917.
    Wang P; Wu Z; Wu J; Pan D; Zeng X; Cheng K
    Curr Microbiol; 2016 Oct; 73(4):491-7. PubMed ID: 27342422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the completely annotated genome of Lactobacillus buchneri CD034, a strain isolated from stable grass silage.
    Heinl S; Wibberg D; Eikmeyer F; Szczepanowski R; Blom J; Linke B; Goesmann A; Grabherr R; Schwab H; Pühler A; Schlüter A
    J Biotechnol; 2012 Oct; 161(2):153-66. PubMed ID: 22465289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitors of biofilm formation by biofuel fermentation contaminants.
    Leathers TD; Bischoff KM; Rich JO; Price NPJ; Manitchotpisit P; Nunnally MS; Anderson AM
    Bioresour Technol; 2014 Oct; 169():45-51. PubMed ID: 25022836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole-cell proteome reference maps of an extreme thermophile, Thermus thermophilus HB8.
    Kim K; Okanishi H; Masui R; Harada A; Ueyama N; Kuramitsu S
    Proteomics; 2012 Oct; 12(19-20):3063-8. PubMed ID: 22887638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homo- and heterofermentative lactobacilli differently affect sugarcane-based fuel ethanol fermentation.
    Basso TO; Gomes FS; Lopes ML; de Amorim HV; Eggleston G; Basso LC
    Antonie Van Leeuwenhoek; 2014 Jan; 105(1):169-77. PubMed ID: 24198118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome responses of Lactobacillus acetotolerans F28 to a short and long term ethanol stress.
    Yang X; Teng K; Zhang J; Wang F; Zhang T; Ai G; Han P; Bai F; Zhong J
    Sci Rep; 2017 Jun; 7(1):2650. PubMed ID: 28572611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome analyses of Staphylococcus aureus in growing and non-growing cells: a physiological approach.
    Kohler C; Wolff S; Albrecht D; Fuchs S; Becher D; Büttner K; Engelmann S; Hecker M
    Int J Med Microbiol; 2005 Dec; 295(8):547-65. PubMed ID: 16325551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation.
    Cheng JS; Zhou X; Ding MZ; Yuan YJ
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):909-23. PubMed ID: 19488749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic investigation of the aggregation phenomenon in Lactobacillus crispatus.
    Siciliano RA; Cacace G; Mazzeo MF; Morelli L; Elli M; Rossi M; Malorni A
    Biochim Biophys Acta; 2008 Feb; 1784(2):335-42. PubMed ID: 18078834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional proteomics within the genus Lactobacillus.
    De Angelis M; Calasso M; Cavallo N; Di Cagno R; Gobbetti M
    Proteomics; 2016 Mar; 16(6):946-62. PubMed ID: 27001126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.