BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 25143402)

  • 1. Regulation of microtubule-based transport by MAP4.
    Semenova I; Ikeda K; Resaul K; Kraikivski P; Aguiar M; Gygi S; Zaliapin I; Cowan A; Rodionov V
    Mol Biol Cell; 2014 Oct; 25(20):3119-32. PubMed ID: 25143402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynein, dynactin, and kinesin II's interaction with microtubules is regulated during bidirectional organelle transport.
    Reese EL; Haimo LT
    J Cell Biol; 2000 Oct; 151(1):155-66. PubMed ID: 11018061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organelle transport along microtubules in Xenopus melanophores: evidence for cooperation between multiple motors.
    Levi V; Serpinskaya AS; Gratton E; Gelfand V
    Biophys J; 2006 Jan; 90(1):318-27. PubMed ID: 16214870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CK1 activates minus-end-directed transport of membrane organelles along microtubules.
    Ikeda K; Zhapparova O; Brodsky I; Semenova I; Tirnauer JS; Zaliapin I; Rodionov V
    Mol Biol Cell; 2011 Apr; 22(8):1321-9. PubMed ID: 21307338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions and regulation of molecular motors in Xenopus melanophores.
    Gross SP; Tuma MC; Deacon SW; Serpinskaya AS; Reilein AR; Gelfand VI
    J Cell Biol; 2002 Mar; 156(5):855-65. PubMed ID: 11864991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterotrimeric kinesin II is the microtubule motor protein responsible for pigment dispersion in Xenopus melanophores.
    Tuma MC; Zill A; Le Bot N; Vernos I; Gelfand V
    J Cell Biol; 1998 Dec; 143(6):1547-58. PubMed ID: 9852150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulation of the CLIP-170--dependent capture of membrane organelles by microtubules through fine tuning of microtubule assembly dynamics.
    Lomakin AJ; Kraikivski P; Semenova I; Ikeda K; Zaliapin I; Tirnauer JS; Akhmanova A; Rodionov V
    Mol Biol Cell; 2011 Nov; 22(21):4029-37. PubMed ID: 21880898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulated bidirectional motility of melanophore pigment granules along microtubules in vitro.
    Rogers SL; Tint IS; Fanapour PC; Gelfand VI
    Proc Natl Acad Sci U S A; 1997 Apr; 94(8):3720-5. PubMed ID: 9108044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential regulation of dynein-driven melanosome movement.
    Reilein AR; Serpinskaya AS; Karcher RL; Dujardin DL; Vallee RB; Gelfand VI
    Biochem Biophys Res Commun; 2003 Sep; 309(3):652-8. PubMed ID: 12963040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetries in kinesin-2 and cytoplasmic dynein contributions to melanosome transport.
    De Rossi MC; De Rossi ME; Sued M; Rodríguez D; Bruno L; Levi V
    FEBS Lett; 2015 Sep; 589(19 Pt B):2763-8. PubMed ID: 26247430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered Tug-of-War Between Kinesin and Dynein Controls Direction of Microtubule Based Transport In Vivo.
    Rezaul K; Gupta D; Semenova I; Ikeda K; Kraikivski P; Yu J; Cowan A; Zaliapin I; Rodionov V
    Traffic; 2016 May; 17(5):475-86. PubMed ID: 26843027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of multiple-dynein transport of melanosomes by non-invasive force measurement using fluctuation unit χ.
    Hasegawa S; Sagawa T; Ikeda K; Okada Y; Hayashi K
    Sci Rep; 2019 Mar; 9(1):5099. PubMed ID: 30911050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of microtubule organization during interphase and M phase.
    Shiina N; Tsukita S
    Cell Struct Funct; 1999 Oct; 24(5):385-91. PubMed ID: 15216896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CLIP-170-dependent capture of membrane organelles by microtubules initiates minus-end directed transport.
    Lomakin AJ; Semenova I; Zaliapin I; Kraikivski P; Nadezhdina E; Slepchenko BM; Akhmanova A; Rodionov V
    Dev Cell; 2009 Sep; 17(3):323-33. PubMed ID: 19758557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms of pigment transport in melanophores.
    Tuma MC; Gelfand VI
    Pigment Cell Res; 1999 Oct; 12(5):283-94. PubMed ID: 10541038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A role for spectrin in dynactin-dependent melanosome transport in Xenopus laevis melanophores.
    Aspengren S; Wallin M
    Pigment Cell Res; 2004 Jun; 17(3):295-301. PubMed ID: 15140076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ubiquitous microtubule-associated protein 4 (MAP4) controls organelle distribution by regulating the activity of the kinesin motor.
    Nabti I; Reddy BJN; Rezgui R; Wang W; Gross SP; Shubeita GT
    Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2206677119. PubMed ID: 36191197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of microtubule-based transport by nucleation of microtubules on pigment granules.
    Semenova I; Gupta D; Usui T; Hayakawa I; Cowan A; Rodionov V
    Mol Biol Cell; 2017 Jun; 28(11):1418-1425. PubMed ID: 28381426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations at phosphorylation sites of Xenopus microtubule-associated protein 4 affect its microtubule-binding ability and chromosome movement during mitosis.
    Shiina N; Tsukita S
    Mol Biol Cell; 1999 Mar; 10(3):597-608. PubMed ID: 10069806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein kinase A, which regulates intracellular transport, forms complexes with molecular motors on organelles.
    Kashina AS; Semenova IV; Ivanov PA; Potekhina ES; Zaliapin I; Rodionov VI
    Curr Biol; 2004 Oct; 14(20):1877-81. PubMed ID: 15498498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.