BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 25143533)

  • 1. Mechanism by which a LINE protein recognizes its 3' tail RNA.
    Hayashi Y; Kajikawa M; Matsumoto T; Okada N
    Nucleic Acids Res; 2014; 42(16):10605-17. PubMed ID: 25143533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conserved 3' UTR stem-loop structure in L1 and Alu transposons in human genome: possible role in retrotransposition.
    Grechishnikova D; Poptsova M
    BMC Genomics; 2016 Dec; 17(1):992. PubMed ID: 27914481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low dependency of retrotransposition on the ORF1 protein of the zebrafish LINE, ZfL2-1.
    Kajikawa M; Sugano T; Sakurai R; Okada N
    Gene; 2012 May; 499(1):41-7. PubMed ID: 22405944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct RNA recognition mechanisms in closely related LINEs from zebrafish.
    Otsu M; Kawai G
    Nucleosides Nucleotides Nucleic Acids; 2019; 38(4):294-304. PubMed ID: 30942141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of retrotransposition-competent LINEs from zebrafish.
    Sugano T; Kajikawa M; Okada N
    Gene; 2006 Jan; 365():74-82. PubMed ID: 16356661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structure of a reverse transcriptase recognition site of a LINE RNA from zebrafish.
    Otsu M; Kajikawa M; Okada N; Kawai G
    J Biochem; 2017 Oct; 162(4):279-285. PubMed ID: 28431120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution structure of an RNA stem-loop derived from the 3' conserved region of eel LINE UnaL2.
    Baba S; Kajikawa M; Okada N; Kawai G
    RNA; 2004 Sep; 10(9):1380-7. PubMed ID: 15273327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. hnRNPL and nucleolin bind LINE-1 RNA and function as host factors to modulate retrotransposition.
    Peddigari S; Li PW; Rabe JL; Martin SL
    Nucleic Acids Res; 2013 Jan; 41(1):575-85. PubMed ID: 23161687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional splice sites in a zebrafish LINE and their influence on zebrafish gene expression.
    Tamura M; Kajikawa M; Okada N
    Gene; 2007 Apr; 390(1-2):221-31. PubMed ID: 17174483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structure and functional importance of a conserved RNA hairpin of eel LINE UnaL2.
    Nomura Y; Kajikawa M; Baba S; Nakazato S; Imai T; Sakamoto T; Okada N; Kawai G
    Nucleic Acids Res; 2006; 34(18):5184-93. PubMed ID: 17000640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dicistronic RNA from the mouse LINE-1 retrotransposon contains an internal ribosome entry site upstream of each ORF: implications for retrotransposition.
    Li PW; Li J; Timmerman SL; Krushel LA; Martin SL
    Nucleic Acids Res; 2006; 34(3):853-64. PubMed ID: 16464823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional reverse transcriptases encoded by A-type mouse LINE-1: defining the minimal domain by deletion analysis.
    Martin SL; Li J; Epperson LE; Lieberman B
    Gene; 1998 Jul; 215(1):69-75. PubMed ID: 9666081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LINEs mobilize SINEs in the eel through a shared 3' sequence.
    Kajikawa M; Okada N
    Cell; 2002 Nov; 111(3):433-44. PubMed ID: 12419252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA polymerization by the reverse transcriptase of the human L1 retrotransposon on its own template in vitro.
    Piskareva O; Schmatchenko V
    FEBS Lett; 2006 Jan; 580(2):661-8. PubMed ID: 16412437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Distinct, Sequence-Induced Conformation Is Required for Recognition of the Constitutive Decay Element RNA by Roquin.
    Codutti L; Leppek K; Zálešák J; Windeisen V; Masiewicz P; Stoecklin G; Carlomagno T
    Structure; 2015 Aug; 23(8):1437-1447. PubMed ID: 26165594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Zinc-Finger Antiviral Protein ZAP Inhibits LINE and Alu Retrotransposition.
    Moldovan JB; Moran JV
    PLoS Genet; 2015 May; 11(5):e1005121. PubMed ID: 25951186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating different DNA binding domains to modulate L1 ORF2p-driven site-specific retrotransposition events in human cells.
    Ade CM; Derbes RS; Wagstaff BJ; Linker SB; White TB; Deharo D; Belancio VP; Ivics Z; Roy-Engel AM
    Gene; 2018 Feb; 642():188-198. PubMed ID: 29154869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA miR-128 represses LINE-1 (L1) retrotransposition by down-regulating the nuclear import factor TNPO1.
    Idica A; Sevrioukov EA; Zisoulis DG; Hamdorf M; Daugaard I; Kadandale P; Pedersen IM
    J Biol Chem; 2017 Dec; 292(50):20494-20508. PubMed ID: 28974576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(A) binding protein C1 is essential for efficient L1 retrotransposition and affects L1 RNP formation.
    Dai L; Taylor MS; O'Donnell KA; Boeke JD
    Mol Cell Biol; 2012 Nov; 32(21):4323-36. PubMed ID: 22907758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of the histone mRNA hairpin with stem-loop binding protein (SLBP) and regulation of the SLBP-RNA complex by phosphorylation and proline isomerization.
    Zhang M; Lam TT; Tonelli M; Marzluff WF; Thapar R
    Biochemistry; 2012 Apr; 51(15):3215-31. PubMed ID: 22439849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.