BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 25143539)

  • 1. Differential modulation of descending signals from the reticulospinal system during reaching and locomotion.
    Dyson KS; Miron JP; Drew T
    J Neurophysiol; 2014 Nov; 112(10):2505-28. PubMed ID: 25143539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Descending signals from the pontomedullary reticular formation are bilateral, asymmetric, and gated during reaching movements in the cat.
    Schepens B; Drew T
    J Neurophysiol; 2006 Nov; 96(5):2229-52. PubMed ID: 16837662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of the motor cortex to the structure and the timing of hindlimb locomotion in the cat: a microstimulation study.
    Bretzner F; Drew T
    J Neurophysiol; 2005 Jul; 94(1):657-72. PubMed ID: 15788518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional organization within the medullary reticular formation of the intact unanesthetized cat. III. Microstimulation during locomotion.
    Drew T
    J Neurophysiol; 1991 Sep; 66(3):919-38. PubMed ID: 1753295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locomotor role of the corticoreticular-reticulospinal-spinal interneuronal system.
    Matsuyama K; Mori F; Nakajima K; Drew T; Aoki M; Mori S
    Prog Brain Res; 2004; 143():239-49. PubMed ID: 14653169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discharge patterns of reticulospinal and other reticular neurons in chronic, unrestrained cats walking on a treadmill.
    Drew T; Dubuc R; Rossignol S
    J Neurophysiol; 1986 Feb; 55(2):375-401. PubMed ID: 3950696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vestibulospinal and reticulospinal neuronal activity during locomotion in the intact cat. I. Walking on a level surface.
    Matsuyama K; Drew T
    J Neurophysiol; 2000 Nov; 84(5):2237-56. PubMed ID: 11067969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-dependent responses evoked in limb muscles by stimulation of medullary reticular formation during locomotion in thalamic cats.
    Drew T; Rossignol S
    J Neurophysiol; 1984 Oct; 52(4):653-75. PubMed ID: 6491711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reticular neuron activities associated with locomotion in thalamic cats.
    Shimamura M; Kogure I; Wada S
    Brain Res; 1982 Jan; 231(1):51-62. PubMed ID: 7055677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discharge patterns of reticulospinal neurons corresponding with quadrupedal leg movements in thalamic cats.
    Shimamura M; Kogure I
    Brain Res; 1983 Jan; 260(1):27-34. PubMed ID: 6824953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of forelimb and hindlimb muscle activity during quadrupedal tied-belt and split-belt locomotion in intact cats.
    Frigon A; Thibaudier Y; Hurteau MF
    Neuroscience; 2015 Apr; 290():266-78. PubMed ID: 25644423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of the reticulospinal system to the postural adjustments occurring during voluntary gait modifications.
    Prentice SD; Drew T
    J Neurophysiol; 2001 Feb; 85(2):679-98. PubMed ID: 11160503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurons in the pontomedullary reticular formation signal posture and movement both as an integrated behavior and independently.
    Schepens B; Stapley P; Drew T
    J Neurophysiol; 2008 Oct; 100(4):2235-53. PubMed ID: 18632892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corticoreticular pathways in the cat. II. Discharge activity of neurons in area 4 during voluntary gait modifications.
    Kably B; Drew T
    J Neurophysiol; 1998 Jul; 80(1):406-24. PubMed ID: 9658060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bilateral actions of the reticulospinal tract on arm and shoulder muscles in the monkey: stimulus triggered averaging.
    Davidson AG; Buford JA
    Exp Brain Res; 2006 Aug; 173(1):25-39. PubMed ID: 16506008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential activation of muscle synergies during locomotion in the intact cat as revealed by cluster analysis and direct decomposition.
    Krouchev N; Kalaska JF; Drew T
    J Neurophysiol; 2006 Oct; 96(4):1991-2010. PubMed ID: 16823029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of red nucleus microstimulation on the locomotor pattern and timing in the intact cat: a comparison with the motor cortex.
    Rho MJ; Lavoie S; Drew T
    J Neurophysiol; 1999 May; 81(5):2297-315. PubMed ID: 10322067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal cord reflexes induced by epidural spinal cord stimulation in normal awake rats.
    Gerasimenko YP; Lavrov IA; Courtine G; Ichiyama RM; Dy CJ; Zhong H; Roy RR; Edgerton VR
    J Neurosci Methods; 2006 Oct; 157(2):253-63. PubMed ID: 16764937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forelimb movements and muscle responses evoked by microstimulation of cervical spinal cord in sedated monkeys.
    Moritz CT; Lucas TH; Perlmutter SI; Fetz EE
    J Neurophysiol; 2007 Jan; 97(1):110-20. PubMed ID: 16971685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.