BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 25143544)

  • 1. A system for the determination of planar force vectors from spontaneously active chicken embryos.
    Sharp AA; Cain BW; Pakiraih J; Williams JL
    J Neurophysiol; 2014 Nov; 112(9):2349-56. PubMed ID: 25143544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental changes in leg coordination of the chick at embryonic days 9, 11, and 13: uncoupling of ankle movements.
    Sharp AA; Ma E; Bekoff A
    J Neurophysiol; 1999 Nov; 82(5):2406-14. PubMed ID: 10561414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correcting two-dimensional kinematic errors for chick embryonic movements in ovo.
    Orosz MD; Bradley NS; Chambers SH
    Comput Biol Med; 1994 Jul; 24(4):305-14. PubMed ID: 7842652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic regulation of leg movement in midstage chick embryos through peripheral nerve stimulation.
    Sharp AA; Fromherz S
    J Neurophysiol; 2011 Nov; 106(5):2776-82. PubMed ID: 21880945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A kinematic analysis of hindlimb motility in 9- and 10-day-old chick embryos.
    Watson SJ; Bekoff A
    J Neurobiol; 1990 Jun; 21(4):651-60. PubMed ID: 2376735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensory regulation of spontaneous limb movements in the midstage embryonic chick.
    Sharp AA
    Dev Psychobiol; 2015 May; 57(4):385-96. PubMed ID: 25808105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematic analysis of wing and leg movements for type I motility in E9 chick embryos.
    Chambers SH; Bradley NS; Orosz MD
    Exp Brain Res; 1995; 103(2):218-26. PubMed ID: 7789429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ankle restraint modifies motility at E12 in chick embryos.
    Bradley NS; Sebelski C
    J Neurophysiol; 2000 Jan; 83(1):431-40. PubMed ID: 10634885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of coordinated movement in chicks: II. Temporal analysis of hindlimb muscle synergies at embryonic day 10 in embryos with spinal gap transections.
    Bradley NS; Bekoff A
    J Neurobiol; 1992 Jun; 23(4):420-32. PubMed ID: 1634889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective effects of light exposure on distribution of motility in the chick embryo at E18.
    Bradley NS; Jahng DY
    J Neurophysiol; 2003 Sep; 90(3):1408-17. PubMed ID: 12761280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related changes and condition-dependent modifications in distribution of limb movements during embryonic motility.
    Bradley NS
    J Neurophysiol; 2001 Oct; 86(4):1511-22. PubMed ID: 11600617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformations in embryonic motility in chick: kinematic correlates of type I and II motility at E9 and E12.
    Bradley NS
    J Neurophysiol; 1999 Apr; 81(4):1486-94. PubMed ID: 10200185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limb movements during embryonic development in the chick: evidence for a continuum in limb motor control antecedent to locomotion.
    Bradley NS; Solanki D; Zhao D
    J Neurophysiol; 2005 Dec; 94(6):4401-11. PubMed ID: 16162824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct measurement of Vorticella contraction force by micropipette deflection.
    France D; Tejada J; Matsudaira P
    FEBS Lett; 2017 Feb; 591(4):581-589. PubMed ID: 28130786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coding of movement- and force-related information in primate primary motor cortex: a computational approach.
    Guigon E; Baraduc P; Desmurget M
    Eur J Neurosci; 2007 Jul; 26(1):250-60. PubMed ID: 17573920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of between-limb movement synchronization in the chick embryo.
    Provine RR
    Dev Psychobiol; 1980 Mar; 13(2):151-63. PubMed ID: 7358220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A non directional cell migration gradient in the presomitic mesoderm contributes to axis elongation in chicken embryos].
    Bénazéraf B; François P; Denans N; Little CD; Pourquié O
    Biol Aujourdhui; 2011; 205(2):95-103. PubMed ID: 21831340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative mechanical evaluation and analysis of Drosophila embryos through the stages of embryogenesis.
    Shen Y; Zhang R; Cozen S; Xi N; Wejinya UC; Hao L
    Birth Defects Res C Embryo Today; 2008 Sep; 84(3):204-14. PubMed ID: 18773458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy-related optimal control accounts for gravitational load: comparing shoulder, elbow, and wrist rotations.
    Gaveau J; Berret B; Demougeot L; Fadiga L; Pozzo T; Papaxanthis C
    J Neurophysiol; 2014 Jan; 111(1):4-16. PubMed ID: 24133223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroethological approaches to the study of motor development in chicks: achievements and challenges.
    Bekoff A
    J Neurobiol; 1992 Dec; 23(10):1486-505. PubMed ID: 1487746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.