These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25143763)

  • 21. Inherent bimanual postural synergies in hands.
    Vinjamuri R; Sun M; Crammond D; Sclabassi R; Mao ZH
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5093-6. PubMed ID: 19163862
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of visual and tactile feedback on kinematic synergies in the grasping hand.
    Patel V; Burns M; Vinjamuri R
    Med Biol Eng Comput; 2016 Aug; 54(8):1217-27. PubMed ID: 26660896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hand Grasping Synergies As Biometrics.
    Patel V; Thukral P; Burns MK; Florescu I; Chandramouli R; Vinjamuri R
    Front Bioeng Biotechnol; 2017; 5():26. PubMed ID: 28512630
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamical Synergies in Multidigit Hand Prehension.
    Pei D; Olikkal P; Adali T; Vinjamuri R
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3203-3206. PubMed ID: 36086426
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hierarchical and multiple hand action representation using temporal postural synergies.
    Tessitore G; Sinigaglia C; Prevete R
    Exp Brain Res; 2013 Mar; 225(1):11-36. PubMed ID: 23229775
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using kinematic reduction for studying grasping postures. An application to power and precision grasp of cylinders.
    Jarque-Bou N; Gracia-Ibáñez V; Sancho-Bru JL; Vergara M; Pérez-González A; Andrés FJ
    Appl Ergon; 2016 Sep; 56():52-61. PubMed ID: 27184310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Encoding of Both Reaching and Grasping Kinematics in Dorsal and Ventral Premotor Cortices.
    Takahashi K; Best MD; Huh N; Brown KA; Tobaa AA; Hatsopoulos NG
    J Neurosci; 2017 Feb; 37(7):1733-1746. PubMed ID: 28077725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanics in posture space: Properties and relevance of principal accelerations for characterizing movement control.
    Longo A; Haid T; Meulenbroek R; Federolf P
    J Biomech; 2019 Jan; 82():397-403. PubMed ID: 30527635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Linking Individual Movements to a Skilled Repertoire: Fast Modulation of Motor Synergies by Repetition of Stereotyped Movements.
    Fricke C; Gentner R; Alizadeh J; Classen J
    Cereb Cortex; 2020 Mar; 30(3):1185-1198. PubMed ID: 31386110
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Joint Principal Component and Discriminant Analysis for Dimensionality Reduction.
    Zhao X; Guo J; Nie F; Chen L; Li Z; Zhang H
    IEEE Trans Neural Netw Learn Syst; 2020 Feb; 31(2):433-444. PubMed ID: 31107663
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel approach to study human posture control: "Principal movements" obtained from a principal component analysis of kinematic marker data.
    Federolf PA
    J Biomech; 2016 Feb; 49(3):364-70. PubMed ID: 26768228
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subspace identification and classification of healthy human gait.
    von Tscharner V; Enders H; Maurer C
    PLoS One; 2013; 8(7):e65063. PubMed ID: 23861736
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unraveling the interaction between pathological upper limb synergies and compensatory trunk movements during reach-to-grasp after stroke: a cross-sectional study.
    van Kordelaar J; van Wegen EE; Kwakkel G
    Exp Brain Res; 2012 Sep; 221(3):251-62. PubMed ID: 22791198
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-segmental movements as a function of experience in karate.
    Zago M; Codari M; Iaia FM; Sforza C
    J Sports Sci; 2017 Aug; 35(15):1515-1522. PubMed ID: 27560105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Research on magnetoencephalography-brain computer interface based on the PCA and LDA data reduction].
    Wang J; Zhou L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Dec; 28(6):1069-74. PubMed ID: 22295687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GA-fisher: A new LDA-based face recognition algorithm with selection of principal components.
    Zheng WS; Lai JH; Yuen PC
    IEEE Trans Syst Man Cybern B Cybern; 2005 Oct; 35(5):1065-78. PubMed ID: 16240780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Feature extraction for on-line EEG classification using principal components and linear discriminants.
    Lugger K; Flotzinger D; Schlögl A; Pregenzer M; Pfurtscheller G
    Med Biol Eng Comput; 1998 May; 36(3):309-14. PubMed ID: 9747570
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biological constraints simplify the recognition of hand shapes.
    Jerde TE; Soechting JF; Flanders M
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):265-9. PubMed ID: 12665044
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of the multi-segmental postural movement strategies utilized in bipedal, tandem and one-leg stance as quantified by a principal component decomposition of marker coordinates.
    Federolf P; Roos L; Nigg BM
    J Biomech; 2013 Oct; 46(15):2626-33. PubMed ID: 24021753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Biomechanical Analysis of Posture and Movement Coordination in Standing Human During Trunk Bending in the Sagittal Plane].
    Alexandrov AV; Frolov AA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2017 Jan; 67(1):33-48. PubMed ID: 30695549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.